题目内容
12、关于x的方程|x2-4x+3|-a=0有三个不相等的实数根,则实数a的值是
1
.分析:根据题意作出y=|x2-4x+3|的图象,从图象可知直线y=1与y=|x2-4x+3|的图象有三个交点即方程|x2-4x+3|-1=0有三个不相等的实数根,即可得到a的值.
解答:解:作函数y=|x2-4x+3|的图象,如图.
由图象知直线y=1与y=|x2-4x+3|的图象有三个交点,即方程|x2-4x+3|=1也就是方程|x2-4x+3|-1=0有三个不相等的实数根,因此a=1.
故答案为:1
由图象知直线y=1与y=|x2-4x+3|的图象有三个交点,即方程|x2-4x+3|=1也就是方程|x2-4x+3|-1=0有三个不相等的实数根,因此a=1.
故答案为:1
点评:考查学生会根据解析式作出相应的函数图象,会根据直线与函数图象交点的个数得到方程解的个数.注意利用数形结合的数学思想解决实际问题.
练习册系列答案
相关题目