题目内容

3.已知集合A={x|(x+3)(6-x)≤0},B={x|log2(x+2)<4}.
(1)求A∩∁RB;
(2)已知C={x|2a<x<a+1}(a∈R),若C⊆B,求实数a的取值范围.

分析 (1)解一元二次不等式,求出A,解对数不等式求出B,进而可求A∩∁RB;
(2)由C={x|2a<x<a+1},C⊆B,分C=∅和C≠∅两种情况,讨论满足条件的a的取值范围,最后综合讨论结果,可得答案.

解答 解:(1)由集合A={x|(x+3)(6-x)≤0}={x|x≤-3或x≥6},B={x|log2(x+2)<4}={x|-2<x<14}.
得∁UB={x|x≤-2或x≥14},
则A∩∁RB={x|x≤-3或x≥6}∩{x|x≤-2或x≥14}=(-∞,-3]∪[14,+∞);
(2)∵C={x|x>2a且x<a+1},(a∈R),C⊆B,
∴①2a≥a+1,即a≥1时,C=∅成立;  
②2a<a+1,即a<1时,C=(2a,a+1)⊆(-2,14),
则 $\left\{\begin{array}{l}{a+1≤14}\\{2a≥-2}\end{array}\right.$,
解得-1≤a<1.
综上所述,a的取值范围为[-1,+∞).

点评 本题考查的知识点是集合的交集,并集,补集运算,难度不大,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网