题目内容
【题目】在平面直角坐标系xOy中,曲线y=x2-2x—3与两条坐标轴的三个交点都在圆C上.若圆C与直线x-y+a=0交于A,B两点,
(1)求圆C的标准方程;
(2)若 (O为原点),求a的值.
【答案】. (1)(x-1)2+(y+1)2=5.(2)a=-4
【解析】
(1)先求出曲线y=x2-2x—3与两条坐标轴的三个交点坐标,设圆C的圆心为(1,t),求出t的值和圆的半径,由此能求出圆C的方程.
(2)设A(x1,y1),B(x2,y2),联立直线与圆的方程,根据一元二次方程判别式和韦达定理,以及,即可求出a 的值.
解:(1)曲线y=x2-2x—3与y轴的交点为(0,-3),与x轴的交点为(-1,0),(3,0).
故可设圆C的圆心为(1,t),则有12+(t+3)2=(1+1)2+t2,解得t=.
则圆C的半径为.
则以圆C的方程为(x-1)2+(y+1)2=5.
(2)设A(x1,y1),B(x2,y2),
其坐标满足方程组:消去y,得到方程2x2+2ax+a2+2a-3=0.
Δ=24-16a-4a2>0,且x1+x2=-a,x1x2=.①
由可得x1x2+y1y2=5,又y1=x1+a,y2=x2+a,
所以2x1x2+a(x1+x2)+a2=5.②
由①,②得a=-4或a=2 ,
因为满足Δ>0,故a=-4
【题目】某测试团队为了研究“饮酒”对“驾车安全”的影响,随机选取100名驾驶员先后在无酒状态、酒后状态下进行“停车距离”测试.测试的方案:电脑模拟驾驶,以某速度匀速行驶,记录下驾驶员的“停车距离”(驾驶员从看到意外情况到车子完全停下所需要的距离).无酒状态与酒后状态下的试验数据分别列于表1和表2. 表1
停车距离d(米) | (10,20] | (20,30] | (30,40] | (40,50] | (50,60] |
频数 | 26 | a | b | 8 | 2 |
表2
平均每毫升血液酒精含量x毫克 | 10 | 30 | 50 | 70 | 90 |
平均停车距离y米 | 30 | 50 | 60 | 70 | 90 |
已知表1数据的中位数估计值为26,回答以下问题.
(Ⅰ)求a,b的值,并估计驾驶员无酒状态下停车距离的平均数;
(Ⅱ)根据最小二乘法,由表2的数据计算y关于x的回归方程 ;
(Ⅲ)该测试团队认为:驾驶员酒后驾车的平均“停车距离”y大于(Ⅰ)中无酒状态下的停车距离平均数的3倍,则认定驾驶员是“醉驾”.请根据(Ⅱ)中的回归方程,预测当每毫升血液酒精含量大于多少毫克时为“醉驾”?
(附:对于一组数据(x1 , y1),(x2 , y2),…,(xn , yn),其回归直线 的斜率和截距的最小二乘估计分别为 , .)