题目内容
14.安排甲、乙、丙、丁四人参加周六、周日两天的公益活动,每人参加一次且每天都有人参加,则甲和乙不在同一天参加活动的概率是( )A. | $\frac{2}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{4}{7}$ | D. | $\frac{2}{7}$ |
分析 根据分类计数原理可得所有的基本事件,再列举出甲乙在同一天的基本事件,继而得到甲和乙不在同一天参加活动的基本事件,根据概率公式计算即可.
解答 解:基本事件分两类,一天3人,一天1人,或每天各有2人,共有${C}_{4}^{3}•{A}_{2}^{2}$+${C}_{4}^{2}$=14种,
其中甲乙在同一天的基本事件有(甲乙丙,丁),(甲乙丁,丙),(丁,甲乙丙),(丙,甲乙丁),(甲乙,丙丁),(丙丁,甲乙),共有6种,
则甲和乙不在同一天参加活动的基本事件有14-6=8种,
故甲和乙不在同一天参加活动的概率是$\frac{8}{14}$=$\frac{4}{7}$,
故选:C
点评 本题考主要查古典概型问题,事件和它的对立事件概率之间的关系. 可以列举出试验发生包含的事件和满足条件的事件,列举法,是解决古典概型问题的一种重要的解题方法,属于基础题.
练习册系列答案
相关题目
19.已知向量$\overrightarrow{OA}$=(3,-4)$\overrightarrow{OB}$=(6,-3),$\overrightarrow{OC}$=(2m,m+1)若$\overrightarrow{AB}$∥$\overrightarrow{OC}$,则实数m的值为( )
A. | $\frac{3}{5}$ | B. | -$\frac{3}{5}$ | C. | 3 | D. | -3 |
6.设函数f(x)的导函数为 f′(x),对任意x∈R都有f(x)>f′(x)成立,则( )
A. | 3f(ln2)<2f(ln3) | B. | 3f(ln2)=2f(ln3) | ||
C. | 3f(ln2)>2f(ln3) | D. | 3f(ln2)与2f(ln3)的大小不确定 |
3.设H、P是△ABC所在平面上异于A、B、C的两点,用$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,$\overrightarrow{h}$分别表示向量$\overrightarrow{PA}$,$\overrightarrow{PB}$,$\overrightarrow{PC}$,$\overrightarrow{PH}$,已知$\overrightarrow{a}$•$\overrightarrow{b}$+$\overrightarrow{c}$•$\overrightarrow{h}$=$\overrightarrow{b}$•$\overrightarrow{c}$+$\overrightarrow{a}$•$\overrightarrow{h}$=$\overrightarrow{c}$•$\overrightarrow{a}$+$\overrightarrow{b}$•$\overrightarrow{h}$,$|{\overrightarrow{AH}}|=1$,$|{\overrightarrow{BH}}|=\sqrt{2}$,$|{\overrightarrow{BC}}|=\sqrt{3}$,点O是△ABC外接圆的圆心,则△AOB,△BOC,△AOC的面积之比为( )
A. | $1:\sqrt{2}:\sqrt{3}$ | B. | $2:\sqrt{3}:1$ | C. | $1:\sqrt{3}:2$ | D. | $\sqrt{2}:1:\sqrt{3}$ |
4.已知A(-1,2,7),B(-3,10,-9),则线段AB中点到坐标原点的距离是( )
A. | $\sqrt{21}$ | B. | 21 | C. | $\sqrt{41}$ | D. | 42 |