题目内容

【题目】当x∈[﹣2,1]时,不等式ax3﹣x2+4x+3≥0恒成立,则实数a的取值范围是

【答案】[﹣6,﹣2]
【解析】解:当x=0时,不等式ax3﹣x2+4x+3≥0对任意a∈R恒成立; 当0<x≤1时,ax3﹣x2+4x+3≥0可化为a≥
令f(x)= ,则f′(x)=﹣ + + =﹣ (*),
当0<x≤1时,f′(x)>0,f(x)在(0,1]上单调递增,
f(x)max=f(1)=﹣6,∴a≥﹣6;
当﹣2≤x<0时,ax3﹣x2+4x+3≥0可化为a≤
由(*)式可知,当﹣2≤x<﹣1时,f′(x)<0,f(x)单调递减,当﹣1<x<0时,f′(x)>0,f(x)单调递增,
f(x)min=f(﹣1)=﹣2,∴a≤﹣2;
综上所述,实数a的取值范围是﹣6≤a≤﹣2,即实数a的取值范围是[﹣6,﹣2].
所以答案是:[﹣6,﹣2].

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网