题目内容

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,设向量 =(a, ), =(cosC,c﹣2b),且
(Ⅰ)求角A的大小;
(Ⅱ)若a=1,求△ABC的周长l的取值范围.

【答案】解:(Ⅰ)由题意 .可知: , 即acosC+ =b,得sinAcosC+ sinC=sinB.
又sinB=sin(A+C)=sinAcosB+cosAsinC.
,∵sinC≠0,∴cosA=
又0<A<π∴A=
(Ⅱ)由正弦定理得:b=
l=a+b+c=1+ =1+
=1+2(
=1+2sin(B+ ).
∵A=
∴B∈ ,∴B+
∴sin(B+
故△ABC的周长l的范围为(2,3]
【解析】(Ⅰ)利用向量的垂直,推出数量积为0,通过三角形内角和以及两角和的正弦函数,确定角A的大小;(Ⅱ)若a=1,利用正弦定理求出b、c的表达式,通过三角形的内角和以及两角和的正弦函数化简表达式,根据角的范围,确定三角函数的范围,然后求△ABC的周长l的取值范围.
【考点精析】本题主要考查了数量积判断两个平面向量的垂直关系的相关知识点,需要掌握若平面的法向量为,平面的法向量为,要证,只需证,即证;即:两平面垂直两平面的法向量垂直才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网