题目内容
3.在四面体S-ABC中,SA⊥平面ABC,∠BAC=120°,SA=AC=2,AB=1,则该四面体的外接球的表面积为( )A. | 11π | B. | 7π | C. | $\frac{10π}{3}$ | D. | $\frac{40π}{3}$ |
分析 求出BC,利用正弦定理可得△ABC外接圆的半径,从而可求该三棱锥的外接球的半径,即可求出三棱锥的外接球表面积.
解答 解:∵AC=2,AB=1,∠BAC=120°,
∴BC=$\sqrt{{2}^{2}+{1}^{2}-2×2×1×cos120°}$=$\sqrt{7}$,
∴三角形ABC的外接圆半径为r,2r=$\frac{\sqrt{7}}{sin120°}$,r=$\frac{\sqrt{21}}{3}$,
∵SA⊥平面ABC,SA=2,
由于三角形OSA为等腰三角形,O是外接球的球心.
则有该三棱锥的外接球的半径R=$\sqrt{{1}^{2}+(\frac{\sqrt{21}}{3})^{2}}$=$\sqrt{\frac{10}{3}}$,
∴该三棱锥的外接球的表面积为S=4πR2=4π×($\sqrt{\frac{10}{3}}$)2=$\frac{40π}{3}$.
故选:D.
点评 本题考查三棱锥的外接球表面积,考查直线和平面的位置关系,确定三棱锥的外接球的半径是关键.
练习册系列答案
相关题目
13.“a=2”是“直线x+y=0与直线2x-ay=0互相垂直”的( )
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
11.设P(x1,y1)是圆O1:x2+y2=9上的点,圆O2的圆心为Q(a,b),半径为1,则(a-x1)2+(b-y1)2=1是圆O1与圆O2相切的( )
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
8.已知集合M={-1,0,1,2,3},N={-2,0},则下列结论正确的是( )
A. | N⊆M | B. | M∩N=N | C. | M∪N=M | D. | M∩N={0} |
15.4月23人是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书谜”,低于60分钟的学生称为“非读书谜”
(1)求x的值并估计全校3000名学生中读书谜大概有多少?(经频率视为频率)
(2)根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为“读书谜”与性别有关?
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$n=a+b+c+d
(1)求x的值并估计全校3000名学生中读书谜大概有多少?(经频率视为频率)
非读书迷 | 读书迷 | 合计 | |
男 | 15 | ||
女 | 45 | ||
合计 |
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$n=a+b+c+d
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
12.已知直线l,m和平面α,β,下列命题中正确的是( )
A. | 若l∥α,l∥β,则α∥β | B. | 若l∥α,m?α,则l∥m | C. | 若α⊥β,l∥α,则l⊥β | D. | 若l⊥α,m?α,则l⊥m |