题目内容

在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;
若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3
次,设分别表示甲,乙,丙3个盒中的球数.
(1)求依次成公差大于0的等差数列的概率;
(2)记,求随机变量的概率分布列和数学期望.

(1) (2)随机变量的概率分布列


0
1
2
3
P




                                                                       
数学期望为

解析试题分析:解:(1)x,y,z依次称公差大于0的等差数列的概率,即甲,乙,丙3个盒中的球数。
分别为0,1,2,此时的概率
(2)的取值范围0,1,2,3,且


.
随机变量的概率分布列


0
1
2
3
P




                                                                       
数学期望为
考点:随机变量的分布列;数学期望
点评:求随机变量的分布列和数学期望是常考题型,解决这种题目关键是求出随机变量对应的概率。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网