题目内容

已知△ABC的两个顶点A、B分别是椭圆
x2
25
+
y2
9
=1 的左、右焦点,三个内角A、B、C满足sinA-sinB=
1
2
sinC,则顶点C的轨迹方程是(  )
分析:利用正弦定理可把sinA-sinB=
1
2
sinC化为|BC|-|AC|=
1
2
|AB|,从而判断顶点C是以A、B为焦点的双曲线的左支(除掉与x轴的交点),根据已知条件求出相关量即可求得方程.
解答:解:因为A、B是椭圆椭圆
x2
25
+
y2
9
=1 的左、右焦点,所以A(-4,0),B(4,0),
由正弦定理得,
|BC|
sinA
=
|AC|
sinB
=
|AB|
sinC
=2R(R为△ABC外接圆的半径),
所以由sinA-sinB=
1
2
sinC,得
|BC|
2R
-
|AC|
2R
=
1
2
|AB|
2R
,即|BC|-|AC|=
1
2
|AB|=4<|AB|,
所以顶点C是以A、B为焦点的双曲线的左支(除掉与x轴的交点),
设顶点C的轨迹方程为
x2
a2
-
y2
b2
=1(x<-a),
则a=2,c=4,所以b2=c2-a2=16-4=12,
故顶点C的轨迹方程为
x2
4
-
y2
12
=1(x<-2)

故选C.
点评:本题考查圆锥曲线方程的求法及正弦定理的应用,考查学生分析解决问题的能力,本题需注意所求轨迹上的点C为三角形顶点,故与A、B不共线.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网