题目内容
【题目】设S,T是R的两个非空子集,如果存在一个从S到T的函数y=f(x)满足:(i)T={f(x)|x∈S};(ii)对任意x1 , x2∈S,当x1<x2时,恒有f(x1)<f(x2),那么称这两个集合“保序同构”,以下集合对不是“保序同构”的是( )
A.A=N* , B=N
B.A={x|﹣1≤x≤3},B={x|x=﹣8或0<x≤10}
C.A={x|0<x<1},B=R
D.A=Z,B=Q
【答案】D
【解析】解:对于A=N* , B=N,存在函数f(x)=x﹣1,x∈N* , 满足:(i)B={f(x)|x∈A};(ii)对任意x1 , x2∈A,当x1<x2时,恒有f(x1)<f(x2),所以选项A是“保序同构”;
对于A={x|﹣1≤x≤3},B={x|x=﹣8或0<x≤10},存在函数 ,满足:
(i)B={f(x)|x∈A};(ii)对任意x1 , x2∈A,当x1<x2时,恒有f(x1)<f(x2),所以选项B是“保序同构”;
对于A={x|0<x<1},B=R,存在函数f(x)=tan( ),满足:(i)B={f(x)|x∈A};
(ii)对任意
x1 , x2∈A,当x1<x2时,恒有f(x1)<f(x2),所以选项C是“保序同构”;
前三个选项中的集合对是“保序同构”,由排除法可知,不是“保序同构”的只有D.
故选D.
【考点精析】通过灵活运用函数单调性的判断方法,掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较即可以解答此题.
【题目】某个产品有若千零部件构成,加工时需要经过6道工序,分别记为.其中,有些工序因为是制造不同的零部件,所以可以在几台机器上同时加工;有些工序因为是对同一个零部件进行处理,所以存在加工顺序关系.若加工工序必须要在工序完成后才能开工,则称为的紧前工序.现将各工序的加工次序及所需时间(单位:小时)列表如下:
工序 | ||||||
加工时间 | 3 | 4 | 2 | 2 | 2 | 1 |
紧前工序 | 无 | 无 |
现有两台性能相同的生产机器同时加工该产品,则完成该产品的最短加工时间是__________小时.(假定每道工序只能安排在一台机器上,且不能间断).