ÌâÄ¿ÄÚÈÝ
£¨2008•ÆÕÍÓÇø¶þÄ££©ÒÑÖªµãE£¬FµÄ×ø±ê·Ö±ðÊÇ£¨-2£¬0£©¡¢£¨2£¬0£©£¬Ö±ÏßEP£¬FPÏཻÓÚµãP£¬ÇÒËüÃǵÄбÂÊÖ®»ýΪ-
£®
£¨1£©ÇóÖ¤£ºµãPµÄ¹ì¼£ÔÚÍÖÔ²C£º
+y2=1ÉÏ£»
£¨2£©Éè¹ýÔµãOµÄÖ±ÏßAB½»£¨1£©ÌâÖеÄÍÖÔ²CÓÚµãA¡¢B£¬¶¨µãMµÄ×ø±êΪ(1£¬
)£¬ÊÔÇó¡÷MABÃæ»ýµÄ×î´óÖµ£¬²¢Çó´ËʱֱÏßABµÄбÂÊkAB£»
£¨3£©Ä³Í¬Ñ§ÓÉ£¨2£©Ìâ½áÂÛΪÌØÀý×÷Íƹ㣬µÃµ½ÈçϲÂÏ룺
ÉèµãM£¨a£¬b£©£¨ab¡Ù0£©ÎªÍÖÔ²C£º
+y2=1ÄÚÒ»µã£¬¹ýÍÖÔ²CÖÐÐĵÄÖ±ÏßABÓëÍÖÔ²·Ö±ð½»ÓÚA¡¢BÁ½µã£®Ôòµ±ÇÒ½öµ±kOM=-kABʱ£¬¡÷MABµÄÃæ»ýÈ¡µÃ×î´óÖµ£®
ÎÊ£º´Ë²ÂÏëÊÇ·ñÕýÈ·£¿ÈôÕýÈ·£¬ÊÔÖ¤Ã÷Ö®£»Èô²»ÕýÈ·£¬Çë˵Ã÷ÀíÓÉ£®
1 |
4 |
£¨1£©ÇóÖ¤£ºµãPµÄ¹ì¼£ÔÚÍÖÔ²C£º
x2 |
4 |
£¨2£©Éè¹ýÔµãOµÄÖ±ÏßAB½»£¨1£©ÌâÖеÄÍÖÔ²CÓÚµãA¡¢B£¬¶¨µãMµÄ×ø±êΪ(1£¬
1 |
2 |
£¨3£©Ä³Í¬Ñ§ÓÉ£¨2£©Ìâ½áÂÛΪÌØÀý×÷Íƹ㣬µÃµ½ÈçϲÂÏ룺
ÉèµãM£¨a£¬b£©£¨ab¡Ù0£©ÎªÍÖÔ²C£º
x2 |
4 |
ÎÊ£º´Ë²ÂÏëÊÇ·ñÕýÈ·£¿ÈôÕýÈ·£¬ÊÔÖ¤Ã÷Ö®£»Èô²»ÕýÈ·£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÓÉÒÑÖªÖеãE£¬FµÄ×ø±ê·Ö±ðÊÇ£¨-2£¬0£©¡¢£¨2£¬0£©£¬Ö±ÏßEP£¬FPÏཻÓÚµãP£¬ÇÒËüÃǵÄбÂÊÖ®»ýΪ-
£®ÎÒÃÇÉè³öP£¨x£¬y£©£¬½ø¶øµÃµ½x£¬yÖ®¼äµÄ¹Øϵʽ£¬ÕûÀíºó¼´¿ÉµÃµ½µãPµÄ¹ì¼£·½³Ì£®
£¨2£©ÉèÖ±ÏßABµÄ·½³ÌΪy=kx£¬A£¨x1£¬kx1£©£¬ÔòB£¨-x1£¬-kx1£©£¬ÁªÁ¢Ö±ÏߺÍÍÖÔ²µÄ·½³Ì£¬ÎÒÃǿɵÃx2=
£¬ÀûÓÃÏÒ¶¨¹«Ê½£¬Çó³öABµÄ³¤£¬ÀûÓõ㵽ֱÏß¹«Ê½£¬Çó³öMµãÖ±ÏßABµÄ¾àÀëÇó³öAB±ßµÄ¸ß£¬¿ÉÒԵõ½¡÷MABÃæ»ýµÄ±í´ïʽ£¬½ø¶øÇó³ö¡÷MABÃæ»ýmµÄÈ¡Öµ·¶Î§£¬µÃµ½¡÷MABÃæ»ýmµÄ£¬´úÈë¿ÉÇó³ö¶ÔÓ¦µÄkÖµ£®
£¨3£©ÉèM£¨1£¬4£©£¬¸ù¾Ý£¨2£©µÄ¼ÆËã°ì·¨£¬ÎÒÃÇÒ×Çó³ö£¬¡÷MABµÄÃæ»ýÈ¡µÃ×î´óֵʱ£¬²¢Çó³ö´Ë½økOM¼°kABµÄÖµ£¬ÑéÖ¤ºó£¬¿ÉµÃ²ÂÏë²»³ÉÁ¢£®
1 |
4 |
£¨2£©ÉèÖ±ÏßABµÄ·½³ÌΪy=kx£¬A£¨x1£¬kx1£©£¬ÔòB£¨-x1£¬-kx1£©£¬ÁªÁ¢Ö±ÏߺÍÍÖÔ²µÄ·½³Ì£¬ÎÒÃǿɵÃx2=
4 |
1+4k2 |
£¨3£©ÉèM£¨1£¬4£©£¬¸ù¾Ý£¨2£©µÄ¼ÆËã°ì·¨£¬ÎÒÃÇÒ×Çó³ö£¬¡÷MABµÄÃæ»ýÈ¡µÃ×î´óֵʱ£¬²¢Çó³ö´Ë½økOM¼°kABµÄÖµ£¬ÑéÖ¤ºó£¬¿ÉµÃ²ÂÏë²»³ÉÁ¢£®
½â´ð£ºÖ¤Ã÷£º£¨1£©ÉèP£¨x£¬y£©£¬ÓÉÖ±ÏßPE£¬PFµÄбÂʾù´æÔÚ¿ÉÖª£¬x¡Ù¡À2
ÓÉÌâÒâ¿ÉµÃ£¬KPE•KPF=
•
=-
ÕûÀí¿ÉµÃ£¬
+y2=1£¨x¡Ù¡À2£©
µãPµÄ¹ì¼£ÎªÍÖÔ²C£º
+y2=1ÉÏ
£¨2£©ÉèÖ±ÏßABµÄ·½³ÌΪy=kx£¬A£¨x1£¬kx1£©£¬ÔòB£¨-x1£¬-kx1£©
ÁªÁ¢·½³Ìy=kxÓë
+y2=1
ÕûÀí¿ÉµÃx2=
AB=2OA=2
=4
¡ßM£¨1£¬
£©µ½Ö±ÏßABµÄ¾àÀëd=
S¡÷MAB=
AB•d=
¡Á4
¡Á
=m
Ôò4£¨1-m2£©k2-4k+1-m2=0
Ôò42-4•4£¨1-m2£©•£¨1-m2£©¡Ý0
¼´£¨1-m2£©2¡Ü1
ÓÖÓÉm¡Ý0¿ÉµÃ
0¡Üm¡Ü
¼´Èý½ÇÐÎMABµÄ×î´óֵΪ
´úÈë4£¨1-m2£©k2-4k+1-m2=0µÃ
k=-
£¨3£©ÉèM£¨1£¬
£©£¬ÔòMµãÔÚÍÖÔ²C£º
+y2=1ÄÚ
ÓÉ£¨2£©ÖÐÍƵ¼¹ý³Ì£¬¿ÉµÃ
µ±k0M=
£¬kAB=-1ʱ£¬¡÷MABµÄÃæ»ýÈ¡µÃ×î´óÖµ
´ËʱkOM¡Ù-kAB£¬
¹Ê²ÂÏ룺µãM£¨a£¬b£©£¨ab¡Ù0£©ÎªÍÖÔ²C£º
+y2=1ÄÚÒ»µã£¬
¹ýÍÖÔ²CÖÐÐĵÄÖ±ÏßABÓëÍÖÔ²·Ö±ð½»ÓÚA¡¢BÁ½µã£®
Ôòµ±ÇÒ½öµ±kOM=-kABʱ£¬¡÷MABµÄÃæ»ýÈ¡µÃ×î´óÖµÕýÈ·
ÓÉÌâÒâ¿ÉµÃ£¬KPE•KPF=
y |
x+2 |
y |
x-2 |
1 |
4 |
ÕûÀí¿ÉµÃ£¬
x2 |
4 |
µãPµÄ¹ì¼£ÎªÍÖÔ²C£º
x2 |
4 |
£¨2£©ÉèÖ±ÏßABµÄ·½³ÌΪy=kx£¬A£¨x1£¬kx1£©£¬ÔòB£¨-x1£¬-kx1£©
ÁªÁ¢·½³Ìy=kxÓë
x2 |
4 |
ÕûÀí¿ÉµÃx2=
4 |
1+4k2 |
AB=2OA=2
(1+k2)x12 |
|
¡ßM£¨1£¬
1 |
2 |
|k-
| ||
|
S¡÷MAB=
1 |
2 |
1 |
2 |
|
|k-
| ||
|
Ôò4£¨1-m2£©k2-4k+1-m2=0
Ôò42-4•4£¨1-m2£©•£¨1-m2£©¡Ý0
¼´£¨1-m2£©2¡Ü1
ÓÖÓÉm¡Ý0¿ÉµÃ
0¡Üm¡Ü
2 |
¼´Èý½ÇÐÎMABµÄ×î´óֵΪ
2 |
´úÈë4£¨1-m2£©k2-4k+1-m2=0µÃ
k=-
1 |
2 |
£¨3£©ÉèM£¨1£¬
1 |
4 |
x2 |
4 |
ÓÉ£¨2£©ÖÐÍƵ¼¹ý³Ì£¬¿ÉµÃ
µ±k0M=
1 |
4 |
´ËʱkOM¡Ù-kAB£¬
¹Ê²ÂÏ룺µãM£¨a£¬b£©£¨ab¡Ù0£©ÎªÍÖÔ²C£º
x2 |
4 |
¹ýÍÖÔ²CÖÐÐĵÄÖ±ÏßABÓëÍÖÔ²·Ö±ð½»ÓÚA¡¢BÁ½µã£®
Ôòµ±ÇÒ½öµ±kOM=-kABʱ£¬¡÷MABµÄÃæ»ýÈ¡µÃ×î´óÖµÕýÈ·
µãÆÀ£º±¾Ì⿼²éµÄ֪ʶµãÊÇÖ±ÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÎÊÌ⣬ÆäÖУ¨1£©µÄ¹Ø¼üÊÇ·Ö±ðÇó³öÁ½ÌõÖ±ÏßµÄбÂÊ£¬½ø¶øµÃµ½Pµãºá¡¢×Ý×ø±êµÄ¹Øϵʽ£¬£¨2£©µÄ¹Ø¼üÊǵõ½¡÷MABÃæ»ýµÄ±í´ïʽ£¬£¨3£©ÖÐÕýÃæÖ¤Ã÷±È½ÏÂé·³£¬¿ÉÒÔ¾Ù³öÒ»·´Àý£¬ÍÆ·´Ç°ÃæµÄ²ÂÏ룮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿