题目内容
【题目】在△ABC中,BC=4,且sinB,sinA,sinC成等差数列,建立适当的直角坐标系,求点A的轨迹方程.
【答案】解:以BC边所在直线为x轴,线段BC的垂直平分线为y轴,距离直角坐标系.则B(﹣2,0),C(2,0).∵BC=4,且sinB,sinA,sinC成等差数列,
∴2sinA=sinB+sinC,
由正弦定理可得:AC+AB=2BC=8>BC=4,
∴点A的轨迹是以B,C为焦点,8为实轴长的椭圆,除去椭圆与x轴的两个交点.
设要求的椭圆标准方程为 ,
∵c=2,a=4,∴b2=a2﹣c2=12.
∴椭圆的方程为:
【解析】以BC边所在直线为x轴,线段BC的垂直平分线为y轴,距离直角坐标系.则B(﹣2,0),C(2,0).由于BC=4,且sinB,sinA,sinC成等差数列,可得2sinA=sinB+sinC,由正弦定理可得:AC+AB=2BC=8>BC=4,可得点A的轨迹是以B,C为焦点,8为实轴长的椭圆,除去椭圆与x轴的两个交点.
练习册系列答案
相关题目
【题目】某校100名学生期中考试数学成绩的频率分布直方图如图,其中成绩分组区间如下:
组号 | 第一组 | 第二组 | 第三组 | 第四组 | 第五组 |
分组 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
(Ⅰ)求图中a的值;
(Ⅱ)根据频率分布直方图,估计这100名学生期中考试数学成绩的平均分;
(Ⅲ)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2名,求其中恰有1人的分数不低于90分的概率?