题目内容
设数列
的前
项和为
,且满足![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221150212583.png)
.
(Ⅰ)求出
,
,
,
的值;
(Ⅱ)猜想数列
的通项公式,并证明.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221150149455.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221150180291.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221150196378.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221150212583.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221150243629.png)
(Ⅰ)求出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221150258327.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221150321360.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221150336349.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221150368352.png)
(Ⅱ)猜想数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221150149455.png)
(Ⅰ)
;
;
;
. (Ⅱ)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221150555630.png)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221150414339.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221150430449.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221150461434.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221150539432.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221150555630.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221150570554.png)
(Ⅰ)代入所给式子即可求出数列的前几项;(Ⅱ)根据第一问的结论猜想出 数列的通项公式,然后按照数学归纳法的步骤证明即可。
(Ⅰ)由
,得
;
;
;
. ………4分
(Ⅱ)猜想![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221151116619.png)
. 证明:
时,
,
时,
,即
,∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221151335567.png)
∴
是以
为首项,
为公比的等比数列,∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221150555630.png)
.
(Ⅰ)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221150586518.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221150414339.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221150430449.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221150461434.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221150539432.png)
(Ⅱ)猜想
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221151116619.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221150570554.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221151179310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221151257438.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221151272396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221151304736.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221151319492.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221151335567.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221151350451.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221151397339.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221151413441.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221150555630.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221150570554.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目