题目内容
【题目】个人排成一排,在下列情况下,各有多少种不同排法?
(1)甲不排头,也不排尾,
(2)甲、乙、丙三人必须在一起
(3)甲、乙之间有且只有两人,
【答案】(1)3600;(2)720;(3)960。
【解析】试题分析:(1)先考虑元素甲选择可能,再考虑其余剩下的元素的全排,运用分步计数原理求解;(2)先排甲、乙、丙三人,再把该三人当成一个整体,再加上另四人,相当于人的全排列,运用分步计数原理求解;(3)先从甲、乙之外的人中选个人排甲、乙之间,再该四人当成一个整体,再加上另三人,相当于人的全排列,然后运用运用分步计数原理求解:
解:(1)甲有5个 位置供选择,有5种,其余有,即共有种;
(2)先排甲、乙、丙三人,有,再把该三人当成一个整体,再加上另四人,相当于人的全排列,即,则共有种;
(3)从甲、乙之外的人中选个人排甲、乙之间,有,甲、乙可以交换有,把该四人当成一个整体,再加上另三人,相当于人的全排列,则共有种;
练习册系列答案
相关题目