题目内容

【题目】已知是定义在R上的奇函数,当时,其中

(1)求的解析式;

(2)解关于的不等式结果用集合或区间表示

【答案】(1);(2)见解析

【解析】

(1)首先利用奇函数的性质求解时函数的解析式,然后将函数的解析式写成分段函数的形式即可;

(2)由题意结合函数的奇偶性和函数的单调性分类讨论两种情况求解不等式的解集即可.

(1)x<0时,-x>0,f(-x)=ax-1.

f(x)是奇函数,有f(-x)=-f(x),

f(-x)=ax-1,

f(x)=-ax+1(x<0).

∴所求的解析式为.

(2)不等式等价于

.

a>1时,有

可得此时不等式的解集为.

同理可得,当0<a<1时,不等式的解集为R.

综上所述,当a>1时,不等式的解集为

0<a<1时,不等式的解集为R.

练习册系列答案
相关题目

【题目】已知函数.

(1)判断并证明函数的奇偶性;

(2)判断当时函数的单调性,并用定义证明;

(3)若定义域为,解不等式.

【答案】(1)奇函数(2)增函数(3)

【解析】试题分析:1)判断与证明函数的奇偶性,首先要确定函数的定义域是否关于原点对称,再判断f(-x)f(x)的关系,如果对定义域上的任意x,都满足f(-x)=f(x)就是偶函数,如果f(-x)=-f(x)就是奇函数,否则是非奇非偶函数。2)利函数单调性定义证明单调性,按假设,作差,化简,判断,下结论五个步骤。(3)由(1)(2)奇函数在(-11)为单调函数,

原不等式变形为f(2x-1)<-f(x),f(2x-1)<f(-x),再由函数的单调性及定义(-1,1)求解得x范围。

试题解析:1)函数为奇函数.证明如下:

定义域为

为奇函数

2)函数在(-11)为单调函数.证明如下:

任取,则

在(-11)上为增函数

3由(1)、(2)可得

解得:

所以,原不等式的解集为

点睛

(1)奇偶性:判断与证明函数的奇偶性,首先要确定函数的定义域是否关于原点对称,再判断f(-x)f(x)的关系,如果对定义域上的任意x,都满足f(-x)=f(x)就是偶函数,如果f(-x)=-f(x)就是奇函数,否则是非奇非偶函数。

(2)单调性:利函数单调性定义证明单调性,按假设,作差,化简,定号,下结论五个步骤。

型】解答
束】
22

【题目】已知函数.

(1)若的定义域和值域均是,求实数的值;

(2)若在区间上是减函数,且对任意的,都有,求实数的取值范围;

(3)若,且对任意的,都存在,使得成立,求实数的取值范围.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网