题目内容
(2012•鹰潭一模)设数列{an}满足条件:a1=8,a2=0,a3=-7,且数列{an+1-an}(n∈N*)是等差数列.
(1)设cn=an+1-an,求数列{cn}的通项公式;
(2)若
=2n•cn,求Sn=b1+b2+…+bn;
(3)数列{an}的最小项是第几项?并求出该项的值.
(1)设cn=an+1-an,求数列{cn}的通项公式;
(2)若
b | n |
(3)数列{an}的最小项是第几项?并求出该项的值.
分析:(1)根据{an+1-an}为等差数列,cn=an+1-an,可得{cn}为等差数列,求出首项与公差,即可求得数列{cn}的通项公式;
(2)bn=(n-9)•2n,Sn=(-8)•21+(-7)•22+…+(n-9)•2n,再同乘公比,利用错位相减法,可求和;
(3)利用an=(an-an-1)+(an-1-an-2)+…(a3-a2)+(a2-a1)+a1,再利用配方法,即可求得结论.
(2)bn=(n-9)•2n,Sn=(-8)•21+(-7)•22+…+(n-9)•2n,再同乘公比,利用错位相减法,可求和;
(3)利用an=(an-an-1)+(an-1-an-2)+…(a3-a2)+(a2-a1)+a1,再利用配方法,即可求得结论.
解答:解:(1)∵{an+1-an}为等差数列,cn=an+1-an,∴{cn}为等差数列,
首项c1=a2-a1=-8,公差d=c2-c1=-7-(-8)=1
∴cn=c1+(n-1)d=-8+(n-1)•1=n-9.…(3分)
(2)bn=(n-9)•2n,∴Sn=(-8)•21+(-7)•22+…+(n-9)•2n①
2Sn=(-8)•22+(-7)•23+…+(n-9)•2n+1②
①-②可得-Sn=(-8)•21+22+23+…+2n-(n-9)•2n+1
∴-Sn=(-9)•21+[21+22+23+…+2n]-(n-9)•2n+1
∴Sn=20+(n-10)•2n+1.…(8分)
(3)an=(an-an-1)+(an-1-an-2)+…(a3-a2)+(a2-a1)+a1=(-8)+(-7)+…(n-10)+8=
[(-8)+(n-10)]+8=
(n-1)(n-18)+8
=
(n2-19n+18)+8=
(n-
)2-
+17
当n=9或n=10时,最小项a9=a10=-28.…(12分)
首项c1=a2-a1=-8,公差d=c2-c1=-7-(-8)=1
∴cn=c1+(n-1)d=-8+(n-1)•1=n-9.…(3分)
(2)bn=(n-9)•2n,∴Sn=(-8)•21+(-7)•22+…+(n-9)•2n①
2Sn=(-8)•22+(-7)•23+…+(n-9)•2n+1②
①-②可得-Sn=(-8)•21+22+23+…+2n-(n-9)•2n+1
∴-Sn=(-9)•21+[21+22+23+…+2n]-(n-9)•2n+1
∴Sn=20+(n-10)•2n+1.…(8分)
(3)an=(an-an-1)+(an-1-an-2)+…(a3-a2)+(a2-a1)+a1=(-8)+(-7)+…(n-10)+8=
n-1 |
2 |
1 |
2 |
=
1 |
2 |
1 |
2 |
19 |
2 |
192 |
8 |
当n=9或n=10时,最小项a9=a10=-28.…(12分)
点评:本题考查数列的通项与求和,解题的关键是掌握等差数列的通项公式及错位相减法求和,属于中档题.
练习册系列答案
相关题目