题目内容

(2012•鹰潭一模)设D为△ABC的边AB上一点,P为△ABC内一点,且满足
AD
=
λ+1
λ2+
2
λ+1
AB
AP
=
AD
+
λ
λ+1
BC
,λ>0
,则
S△APD
S△ABC
(  )
分析:根据向量关系,确定DP:BC=
λ
λ+1
,△ADP的高:△ABC的高=AD:AB=
λ+1
λ2+
2
λ+1
,从而可求面积之比,再利用基本不等式,即可得到结论.
解答:解:∵
AP
=
AD
+
λ
λ+1
BC
=
AD
+
DP

DP
=
λ
λ+1
BC

∴DP:BC=
λ
λ+1

AD
=
λ+1
λ2+
2
λ+1
AB

∴△ADP的高:△ABC的高=AD:AB=
λ+1
λ2+
2
λ+1

S△APD
S△ABC
=
λ
λ+1
×
λ+1
λ2+
2
λ+1
=
λ
λ2+
2
λ+1
=
1
λ+
1
λ
+
2

∵λ>0,∴λ+
1
λ
≥2
,当且仅当λ=1时,取等号
∴当λ=1时,
S△APD
S△ABC
取得最大值
1
2+
2
2-
2
2
=1-
2
2

故选D.
点评:本题考查向量知识的运用,考查三角形的面积,考查基本不等式的运用,解题的关键是确定面积之比.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网