题目内容
【题目】我们称满足: ()的数列为“级梦数列”.
(1)若是“级梦数列”且.求: 和的值;
(2)若是“级梦数列”且满足, ,求的最小值;
(3)若是“0级梦数列”且,设数列的前项和为.证明: ().
【答案】(1) , ;(2);(3)见解析。
【解析】试题分析:(1)根据递推关系式,可求数列前四项的值,代入所求式子即可求解;(2)根据递推关系式,采用裂项相消的方法可化简条件,然后写出构造均值不等式即可求出其最小值;(3)通过,利用累加法求出,通过两边同除可得,累加求的范围,从而得出结论.
试题解析:
(1)是“1级梦数列”,所以,当n=2,3,4,时,代入可求得;
(2)由条件可得: ,
∴
解得
∴
当且仅当时取等号.
(3)根据,可得①
又由得
累加得: ,
所以 ②
由①②得
练习册系列答案
相关题目