题目内容
8.设数列{an}为等差数列,数列{bn}为等比数列.若a1>a2,b1>b2,且bi=ai2(i=1,2,3),则数列{bn}的公比为3-2$\sqrt{2}$.分析 设等差数列{an}的公差为d,可得d>0,由数列{bn}为等比数列,可得b22=b1•b3,代入化简可得a1和d的关系,分类讨论可得b1和b2,可得其公比.
解答 解:设等差数列{an}的公差为d,
由a1>a2可得d<0,
∴b1=a12,b2=a22=(a1+d)2,
b3=a32=(a1+2d)2,
∵数列{bn}为等比数列,∴b22=b1•b3,
即(a1+d)4=a12•(a1+2d)2,
∴(a1+d)2=a1•(a1+2d) ①
或(a1+d)2=-a1•(a1+2d),②
由①可得d=0与d>0矛盾,应舍去;
由②可得a1=$\frac{-2-\sqrt{2}}{2}$d,或a1=$\frac{-2+\sqrt{2}}{2}$d,
当a1=$\frac{-2-\sqrt{2}}{2}$d时,可得b1=a12=$\frac{3+2\sqrt{2}}{2}{d}^{2}$
b2=a22=(a1+d)2=$\frac{1}{2}{d}^{2}$,满足b1>b2,
当a1=$\frac{-2+\sqrt{2}}{2}$d时,可得b1=a12=$\frac{3-2\sqrt{2}}{2}{d}^{2}$,
b2=(a1+d)2=$\frac{1}{2}{d}^{2}$,此时显然与b1>b2矛盾,舍去;
∴数列{bn}的公比q=$\frac{{b}_{2}}{{b}_{1}}$=$\frac{\frac{1}{2}{d}^{2}}{\frac{3+2\sqrt{2}}{2}{d}^{2}}$=$\frac{1}{3+2\sqrt{2}}$=$\frac{3-2\sqrt{2}}{(3+2\sqrt{2})(3-2\sqrt{2})}$=3-2$\sqrt{2}$,
综上可得数列{bn}的公比q=3-2$\sqrt{2}$,
故答案为:$3-2\sqrt{2}$
点评 本题考查等差数列与等比数列的性质,涉及分类讨论的思想,考查学生的运算能力.
A. | ($\frac{4}{3}$,+∞) | B. | [$\frac{4}{3}$,2] | C. | [$\frac{4}{3}$,2) | D. | ($\frac{4}{3}$,2] |