ÌâÄ¿ÄÚÈÝ

£¨2008•ÇàÆÖÇøһģ£©ÒÑÖªf£¨x£©=log2x£¬Èô2£¬f£¨a1£©£¬f£¨a2£©£¬f£¨a3£©£¬¡­£¬f£¨an£©£¬2n+4£¬¡­£¨n¡ÊN*£©³ÉµÈ²îÊýÁУ®
£¨1£©ÇóÊýÁÐ{an}£¨n¡ÊN*£©µÄͨÏʽ£»
£¨2£©Éèg£¨k£©ÊDz»µÈʽlog2x+log2(3
ak
-x)¡Ý2k+3(k¡ÊN*)
ÕûÊý½âµÄ¸öÊý£¬Çóg£¨k£©£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÊÔÇóÒ»¸öÊýÁÐ{bn}£¬Ê¹µÃ
lim
n¡ú¡Þ
[
1
g(1)g(2)
b1+
1
g(2)g(3)
b2+¡­
1
g(n)g(n+1)
bn]=
1
5
£®
·ÖÎö£º£¨1£©ÏÈŪÇåÊýÁеÄÏîÊý£¬È»ºó¸ù¾ÝµÈ²îÊýÁеÄͨÏʽÇó³ö¹«²îd£¬´Ó¶øÇó³öf£¨an£©µÄÖµ£¬¼´¿ÉÇó³öÊýÁÐ{an}£¨n¡ÊN*£©µÄͨÏʽ£»
£¨2£©½«ak´úÈë²»µÈʽ£¬È»ºó¸ù¾Ý¶ÔÊýµÄÔËËãÐÔÖʽøÐл¯¼ò±äÐΣ¬È»ºóÒòʽ·Ö½âµÃ£¨x-2k+1£©£¨x-2•2k+1£©¡Ü0£¬´Ó¶øÇó³öxµÄ·¶Î§£¬¼´¿ÉÇó³ög£¨k£©£»
£¨3£©½«
1
g(n)g(n+1)
½øÐÐÁÑÏîµÃ
1
g(n)g(n+1)
=
1
2n+1
(
1
2n+1+1
-
1
2n+2+1
)
£¬¿ÉÈ¡bn=2n+1£¬È»ºóÑéÖ¤
lim
n¡ú¡Þ
[
1
g(1)g(2)
b1+
1
g(2)g(3)
b2+¡­
1
g(n)g(n+1)
bn]=
1
5
ÊÇ·ñ³ÉÁ¢£®
½â´ð£º½â£º£¨1£©2n+4=2+£¨n+1£©d£¬
¡àd=2    f£¨an£©=2+£¨n+1-1£©•2=2£¨n+1£©
¼´log2an=2n+2£¬
¡àan=22n+2
£¨2£©log2(-x2+3
22(k+1)
x)¡Ý2k+3
£¬
¡à-x2+3
22(k+1)
x¡Ý22k+3
£¬
µÃ£¬x2-3•2k+1x+22£¨k+1£©+1¡Ü0£¬¼´x2-3•2k+1x+2•£¨2k+1£©2¡Ü0£¬
¡à£¨x-2k+1£©£¨x-2•2k+1£©¡Ü0£¬
¡à2k+1¡Üx¡Ü2•2k+1
Ôòg£¨k£©=2k+1+1
£¨3£©
1
g(n)g(n+1)
=
1
(2n+1+1)(2n+2+1)
=
1
2n+1
(
1
2n+1+1
-
1
2n+2+1
)
£¬
È¡bn=2n+1£¬
Ôò
1
g(n)g(n+1)
bn=
1
(2n+1+1)(2n+2+1)
bn=
1
2n+1+1
-
1
2n+2+1

lim
n¡ú¡Þ
[
1
g(1)g(2)
b1+
1
g(2)g(3)
b2+¡­
1
g(n)g(n+1)
bn]=
lim
n¡ú¡Þ
(
1
5
-
1
2n+2+1
)=
1
5
£®
¡àbn=2n+1
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÊýÁÐÓë²»µÈʽµÄ×ÛºÏÔËÓã¬Í¬Ê±¿¼²éÁËÁÑÏîÇóºÍ·¨ºÍ¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø