题目内容
19.设点A(-1,0),B(1,0),动点P到A点的距离与到B点的距离之比为2,则点P的轨迹方程是( )A. | ${(x-\frac{5}{3})^2}+{y^2}=\frac{16}{9}$ | B. | ${(x+\frac{5}{3})^2}+{y^2}=\frac{16}{9}$ | C. | ${(x-\frac{5}{3})^2}+{y^2}=\frac{4}{3}$ | D. | ${(x+\frac{5}{3})^2}+{y^2}=\frac{4}{3}$ |
分析 设点P(x,y),由题意可知:|PA|=2|PB|,由两点间的距离公式化简可得轨迹E的方程.
解答 解:设点P(x,y),由题意可知:|PA|=2|PB|,则$\sqrt{(x+1)^{2}+{y}^{2}}$=2$\sqrt{(x-1)^{2}+{y}^{2}}$,
故P点的轨迹E的方程为:${(x-\frac{5}{3})^2}+{y^2}=\frac{16}{9}$.
故选:A.
点评 本题考查求点的轨迹方程的方法,正确化简是解题的关键.
练习册系列答案
相关题目
9.已知儿童退烧药,其药品安全性疑虑引起社会的广泛关注,国家药监局调查了这种的100个相关数据,绘制成如图所示的频率分布直方图,则估计样本数据的中位数为(精确到0.01)( )
A. | 13.5 | B. | 13.14 | C. | 13.25 | D. | 13.34 |
10.数列{$\frac{2n}{n-4π}$}中的最大项是( )
A. | 第11项 | B. | 第12项 | C. | 第13项 | D. | 第14项 |
14.已知sin(π+θ)+cos($\frac{π}{2}$+θ)=-2$\sqrt{3}$cos(2π-θ),则sinθcosθ-cos2θ=( )
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{3}-1}{4}$ | D. | $\frac{1-\sqrt{3}}{4}$ |
4.一商场对每天进店人数和商品销售件数进行了统计对比,得到如下表格:
其中i=1,2,3,4,5,6,7.
(1)以每天进店人数为横轴,每天商品销售件数为纵轴,画出散点图;
(2)求回归直线方程.(结果保留到小数点后两位)
参考公式$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$
(3)预测进店人数为80人时,商品销售的件数.(结果保留整数)
人数xi | 10 | 15 | 20 | 25 | 30 | 35 | 40 |
件数yi | 4 | 7 | 12 | 15 | 20 | 23 | 27 |
(1)以每天进店人数为横轴,每天商品销售件数为纵轴,画出散点图;
(2)求回归直线方程.(结果保留到小数点后两位)
参考公式$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$
(3)预测进店人数为80人时,商品销售的件数.(结果保留整数)
11.函数f(x)=2cos(ωx+$\frac{π}{3}$)(ω>0)的图象与x轴交点的横坐标构成一个公差为$\frac{π}{2}$的等差数列,要得到函数g(x)=2sinωx的图象,只需将函数f(x)的图象( )
A. | 向左平移$\frac{π}{12}$个单位长度 | B. | 向右平移$\frac{π}{6}$个单位长度 | ||
C. | 向右平移$\frac{5π}{12}$个单位长度 | D. | 向左平移$\frac{π}{3}$个单位长度 |