题目内容
【题目】《五曹算经》是我国南北朝时期数学家甄鸾为各级政府的行政人员编撰的一部实用算术书.其第四卷第九题如下:“今有平地聚粟,下周三丈高四尺,问粟几何?”其意思为“场院内有圆锥形稻谷堆,底面周长3丈,高4尺,那么这堆稻谷有多少斛?”已知1丈等于10尺,1斜稻谷的体积约为1.62立方尺,圆周率约为3,估算出堆放的稻谷约有( )
A.57.08斜B.171.24斛C.61.73斛D.185.19斛
【答案】C
【解析】
根据圆锥的周长求出底面半径,再计算圆锥的体积,从而估算堆放的稻谷数.
设圆锥形稻谷堆的底面半径为尺,
则底面周长为尺,解得尺,
又高为尺,
所以圆锥的体积为(立方尺);
又(斛,
所以估算堆放的稻谷约有61.73(斛.
故选:.
练习册系列答案
相关题目
【题目】某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收货量(单位:kg)与它的“相近”作物株数之间的关系如下表所示:
X | 1 | 2 | 3 | 4 |
Y | 51 | 48 | 45 | 42 |
这里,两株作物“相近”是指它们之间的直线距离不超过1米.
(Ⅰ)完成下表,并求所种作物的平均年收获量;
Y | 51 | 48 | 45 | 42 |
频数 | 4 |
(Ⅱ)在所种作物中随机选取一株,求它的年收获量至少为48kg的概率.