题目内容
8.函数f(x)=tan(x+$\frac{π}{4}$)的单调递增区间为(以下的k∈Z)( )A. | (kπ-$\frac{π}{2}$,kπ+$\frac{π}{2}$) | B. | (kπ,(k+1)π) | C. | (kπ-$\frac{π}{4}$,kπ+$\frac{3π}{4}$) | D. | (kπ-$\frac{3π}{4}$,kπ+$\frac{π}{4}$) |
分析 由条件利用正切函数的单调增区间求得f(x)的增区间.
解答 解:对于函数f(x)=tan(x+$\frac{π}{4}$),令kπ-$\frac{π}{2}$<x+$\frac{π}{4}$<kπ+$\frac{π}{2}$,k∈Z,
求得kπ-$\frac{3π}{4}$<x<kπ+$\frac{π}{4}$,k∈Z,可得函数的增区间为 (kπ-$\frac{3π}{4}$,kπ+$\frac{π}{4}$),k∈Z,
故选:D.
点评 本题主要考查正切函数的单调性,属于基础题.
练习册系列答案
相关题目
16.如图,为了测得河对岸A、B两点间的距离,在这一岸定一基线CD,现已测得CD=a,∠ACD=60°,∠BCD=30°,∠BDC=105°,∠ADC=60°,则AB=( )
A. | $\frac{1}{2}$a | B. | $\frac{{\sqrt{2}}}{2}$a | C. | $\frac{{\sqrt{3}}}{2}$a | D. | a |
13.函数y=3sin(2x+$\frac{π}{3}$)的图象可以看作是把函数y=3sin2x的图象作下列移动而得到( )
A. | 向左平移$\frac{π}{3}$单位 | B. | 向右平移$\frac{π}{3}$单位 | C. | 向左平移$\frac{π}{6}$单位 | D. | 向右平移$\frac{π}{6}$单位 |
20.设集合P={1,2,3,4},Q={x|x2-x-2<0,x∈R},则P∩Q=( )
A. | {1,2} | B. | {3,4} | C. | {1} | D. | {-2,-1,0,1,2} |