题目内容
(本题满分14分)已知函数
. ![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235849108518.png)
(1)是否存在实数
使函数f(x)为奇函数?证明你的结论;
(2)用单调性定义证明:不论
取任何实数,函数f(x)在其定义域上都是增函数;
(3)若函数f(x)为奇函数,解不等式
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235849077969.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235849108518.png)
(1)是否存在实数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235849108283.png)
(2)用单调性定义证明:不论
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235849108283.png)
(3)若函数f(x)为奇函数,解不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232358492801069.png)
(1)当
时,函数f(x)为奇函数;(2)证明:见解析。
(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235849295337.png)
(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235849326923.png)
试题分析:(1)根据f(x)为奇函数,可确定f(-x)+f(x)=0恒成立.从而可得a值.
(2)利用单调性的定义证明分三个步骤:一取值,二作差变形判断差值符号,三确定单调性.
(3)利用单调性与奇偶性把不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232358492801069.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232358493731007.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232358494041042.png)
然后利用单调性转化为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235849436692.png)
(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235849451490.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235849467532.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235849498303.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235849514558.png)
假设存在实数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235849108283.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235849560538.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235849576636.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235849295337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235849607195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235849638778.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235849670810.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235849701857.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235849732834.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235849607195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235849295337.png)
(2)证明:任取
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235850028563.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235850044429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235850075861.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235850106741.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235850122621.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235850153702.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235850169537.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235850200509.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232358502781212.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232358502941169.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235850309476.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235850325503.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235850356560.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235850372725.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235850387195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235850418803.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235850450739.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235850387195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235849108283.png)
(3)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232358492801069.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232358493731007.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235850543235.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235850559926.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232358505901058.png)
由(2)已证得函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235850606495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232358505901058.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235850637756.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235850668674.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235850684800.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235850699673.png)
不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232358492801069.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235849326923.png)
点评:判定函数的奇偶性先确定定义域是否关于原点对称;利用单调性证明证明时要注意三个步骤一取值,作差变形,得出结论.变形的目的是判断差值符号.解抽象不等式要注意利用单调性脱掉法则符号f转化为普通不等式求解.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目