题目内容
【题目】设函数为的导函数.
(Ⅰ)求的单调区间;
(Ⅱ)当时,证明;
(Ⅲ)设为函数在区间内的零点,其中,证明.
【答案】(Ⅰ)单调递增区间为的单调递减区间为.(Ⅱ)见证明;(Ⅲ)见证明
【解析】
(Ⅰ)由题意求得导函数的解析式,然后由导函数的符号即可确定函数的单调区间;
(Ⅱ)构造函数,结合(Ⅰ)的结果和导函数的符号求解函数的最小值即可证得题中的结论;
(Ⅲ)令,结合(Ⅰ),(Ⅱ)的结论、函数的单调性和零点的性质放缩不等式即可证得题中的结果.
(Ⅰ)由已知,有.
当时,有,得,则单调递减;
当时,有,得,则单调递增.
所以,的单调递增区间为,
的单调递减区间为.
(Ⅱ)记.依题意及(Ⅰ)有:,
从而.当时,,故
.
因此,在区间上单调递减,进而.
所以,当时,.
(Ⅲ)依题意,,即.
记,则.
且.
由及(Ⅰ)得.
由(Ⅱ)知,当时,,所以在上为减函数,
因此.
又由(Ⅱ)知,故:
.
所以.
练习册系列答案
相关题目
【题目】年月,电影《毒液》在中国上映,为了了解江西观众的满意度,某影院随机调查了本市观看影片的观众,现从调查人群中随机抽取部分观众.并用如图所示的表格记录了他们的满意度分数(分制),若分数不低于分,则称该观众为“满意观众”,请根据下面尚未完成并有局部污损的频率分布表(如图所示),解决下列问题.
组别 | 分组 | 频数 | 频率 |
第组 | |||
第组 | |||
第组 | |||
第组 | |||
第组 | |||
合计 |
(1)写出、的值;
(2)画出频率分布直方图,估算中位数;
(3)在选取的样本中,从满意观众中随机抽取名观众领取奖品,求所抽取的名观众中至少有名观众来自第组的概率.