题目内容

20.${C}_{3}^{0}$+${C}_{4}^{1}$+${C}_{5}^{2}$+${C}_{6}^{3}$+…+${C}_{20}^{17}$的值为${C}_{21}^{17}$.

分析 根据组合数公式${C}_{n}^{m-1}$+${C}_{n}^{m}$=${C}_{n+1}^{m}$进行计算即可.

解答 解:${C}_{3}^{0}$+${C}_{4}^{1}$+${C}_{5}^{2}$+${C}_{6}^{3}$+…+${C}_{20}^{17}$=(${C}_{4}^{0}$+${C}_{4}^{1}$)+${C}_{5}^{2}$+${C}_{6}^{3}$+…+${C}_{20}^{17}$
=(${C}_{5}^{1}$+${C}_{5}^{2}$)+${C}_{6}^{3}$+…+${C}_{20}^{17}$
=${C}_{6}^{2}$+${C}_{6}^{3}$+…+${C}_{20}^{17}$
=${C}_{7}^{3}$+${C}_{7}^{4}$…+${C}_{20}^{17}$

=${C}_{20}^{16}$+${C}_{20}^{17}$
=${C}_{21}^{17}$.
故答案为:${C}_{21}^{17}$.

点评 本题考查了组合数公式的应用问题,也考查了计算能力的应用问题,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网