题目内容
(本小题满分12分)甲、乙等名同学参加某高校的自主招生面试,已知采用抽签的方式随机确定各考生的面试顺序(序号为).
(Ⅰ)求甲、乙两考生的面试序号至少有一个为奇数的概率;
(Ⅱ)记在甲、乙两考生之间参加面试的考生人数为,求随机变量的分布列与期望.
(Ⅰ);(Ⅱ)分布列是:
.0 1 2 3 4 P
解析试题分析:(Ⅰ)用组合计算基本事件数,由等可能性事件的概率计算公式即可求解;(Ⅱ)利用组合也可以求出随机变量的分布列,然后根据期望的定义求出.
(Ⅰ)只考虑甲、乙两考生的相对位置,用组合计算基本事件数;
设A表示“甲、乙的面试序号至少有一个为奇数”,则表示“甲、乙的序号均为偶数”,
由等可能性事件的概率计算公式得:
甲、乙两考生的面试序号至少有一个为奇数的概率是. 6分
(另解)
(Ⅱ)随机变量的所有可能取值是0,1,2,3,4,
且,,,,
[另解:,,,
10分
所以随机变量的分布列是:
所以 ,0 1 2 3 4 P
即甲、乙两考生之间的面试考生个数的期望值是. 12分.
考点:概率知识,分布列和期望的求法.
某种产品按质量标准分为,,,,五个等级.现从一批该产品随机抽取20个,对其等级进行统计分析,得到频率分布表如下:
等级 | |||||
频率 |
(2)在(1)的条件下,从等级为3和5的所有产品中,任意抽取2个,求抽取的2个产品等级恰好相同的概率.
某校学习小组开展“学生语文成绩与外语成绩的关系”的课题研究,对该校高二年级800名学生上学期期末语文和外语成绩,按优秀和不优秀分类得结果:语文和外语都优秀的有60人,语文成绩优秀但外语不优秀的有140人,外语成绩优秀但语文不优秀的有100人.
(Ⅰ)能否在犯错概率不超过0.001的前提下认为该校学生的语文成绩与外语成绩有关系?
(Ⅱ)将上述调查所得到的频率视为概率,从该校高二年级学生成绩中,有放回地随机抽取3名学生的成绩,记抽取的3 个成绩中语文,外语两科成绩至少有一科优秀的个数为X ,求X的分布列和期望E(x).
0.010 | 0.005 | 0.001 | |
6.635 | 7.879 | 10.828 |
有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表:
| 优秀 | 非优秀 | 总计 |
甲班 | 10 | | |
乙班 | | 30 | |
合计 | | | 105 |
(Ⅰ)请完成上面的列联表;
(Ⅱ)从105名学生中选出10名学生组成参观团,若采用下面的方法选取:用简单随机抽样从105人中剔除5人,剩下的100人再按系统抽样的方法抽取10人,请写出在105人中,每人入选的概率(不必写过程);
(Ⅲ)把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号,试求抽到6号或10号的概率.