题目内容

已知向量
α
β
γ
满足|
α
|=1
|
α
-
β
|=|
β
|
(
α
-
γ
)•(
β
-
γ
)=0
.若对每一确定的
β
|
γ|
的最大值和最小值分别为m,n,则对任意
β
,m-n的最小值是(  )
A、
1
2
B、
1
4
C、
3
4
D、1
分析:我们分别令|
α
|=1
OB
=
β
OC
=
γ
,根据由已知中,向量
α
β
γ
满足|
α
|=1
|
α
-
β
|=|
β
|
(
α
-
γ
)•(
β
-
γ
)=0
.可判断出A,B,C三点的位置关系,及m-n的几何意义,进而得到答案.
解答:解:∵|
α
|=1

∴令
OA
=
α
则A必在单位圆上,
又∵又向量
β
满足|
α
-
β
|=|
β
|

∴令
OB
=
β
则点B必在线段OA的中垂线上,
OC
=
γ

又∵(
α
-
γ
)•(
β
-
γ
)=0

故C点在以线段AB为直径的圆M上,任取一点C,记
OC
=
γ

故m-n就是圆M的直径|AB|
显然,当点B在线段OA的中点时,(m-n)取最小值
1
2

即(m-n)min=
1
2

故选A
点评:本题考查的知识点是两向量的和与差的模的最值,及向量加减法的几何意义,其中根据已知条件,判断出A,B,C三点的位置关系,及m-n的几何意义,是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网