题目内容
【题目】已知椭圆的离心率,左顶点到直线的距离,为坐标原点.
(1)求椭圆的方程;
(2)设直线与椭圆相交于两点,若以为直径的圆经过坐标原点,证明:到直线的距离为定值.
【答案】(1).(2)见解析
【解析】
(1)结合离心率,计算出a,b,c之间的关系,利用点到直线距离,计算a,b值,即可。(2)分直线AB斜率存在与不存在讨论,结合直线方程和椭圆方程,并利用,计算O到直线距离,即可.
(1)∵椭圆的离心率,
∴,
∴,
∵,
∴,即,
∵椭圆的左顶点到直线,即到的距离,
∴,
把代入得:,解得:,
∴,,
∴椭圆的方程为.
(2)设,
①当直线的斜率不存在时,由椭圆的性质可得:,,
∵当直线的斜率不存在时,以为直径的圆经过坐标原点,
∴,即,也就是,
又∵点在椭圆上, ∴,
∵以为直径的圆经过坐标原点,且平行于轴,
∴,∴,解得:
此时点到直线的距离
②当直线的斜率存在时,设直线的方程为,
与椭圆方程联立有,消去,得
∴,,
同理:,消去,得,
即,∴
∵为直径的圆过坐标原点,所以,∴
∴
∴
∴
∴点到直线的距离
综上所述,点到直线的距离为定值.
练习册系列答案
相关题目