题目内容
已知等差数列
的公差
大于0,且
、
是方程
的两根.数列
的前
项和为
,满足![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213419377888.png)
(Ⅰ)求数列
,
的通项公式;
(Ⅱ)设数列
的前
项和为
,记
.若
为数列
中的最大项,求实数
的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213419096453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213419112321.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213419128344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213419190346.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213419237664.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213419252471.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213419268297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213419284373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213419377888.png)
(Ⅰ)求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213419096453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213419252471.png)
(Ⅱ)设数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213419096453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213419268297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213419486388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232134197051232.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213419720304.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213419876431.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213419908323.png)
(1)
,
;(2)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213420235871.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232134202821000.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213420298622.png)
(1)根据韦达定理找出等差数列的项的关系求出公差和首项,再根据定义求出等差数列的通项公式,根据数列前n项和的定义构造递推式,进一步找出数列规律,求出数列的通项;(2)利用条件列出相邻项的不等式,再利用不等式知识求出参数范围
解:(Ⅰ)由
,且
,所以
,
从而
∴
(3分)
在已知
中,令
,得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213420734390.png)
当
时,
,
,两式相减得,
,
∴
(6分)
(Ⅱ)∵![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213420906995.png)
则
(8分)
当
时,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232134209681712.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213421093903.png)
有
时,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213421327819.png)
时,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213421374792.png)
则有
(12分)
解:(Ⅰ)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213420313741.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213420516436.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213420532602.png)
从而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213420641865.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213420235871.png)
在已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213420672560.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213420688357.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213420734390.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213420766437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213420672560.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213420812597.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213420844534.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232134208591481.png)
(Ⅱ)∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213420906995.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232134209221291.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213420766437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232134209681712.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213421093903.png)
有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213421312426.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213421327819.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213421343438.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213421374792.png)
则有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213420298622.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目