题目内容

精英家教网如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=
6
,M是棱CC1的中点,
(1)求证:A1B⊥AM;
(2)求直线AM与平面AA1B1B所成角的正弦值.
分析:(1)由题意利用几何体的垂直关系建立直角坐标系,求对应向量的数量积为零,即得出垂直;
(2)在(1)的坐标系中,求出面AA1B1B的法向量,再利用对应向量的数量积求余弦值的绝对值,即为所求.
解答:精英家教网解:(1)如图,以B为原点,BA、BB1所在直线为y轴、z轴建立空间直角坐标系,
则B(0,0,0),A1(0,2,
6
),A(0,2,0),M(
3
2
1
2
6
2
)

A1B
=(0,-2,-
6
)
AM
=(
3
2
,-
3
2
6
2
)

A1B
AM
=0+3-3=0,
A1B
AM
,∴
A1B
AM

(2)∵x轴⊥面AA1B1B,∴面AA1B1B的法向量取n=(1,0,0),
设直线AM与平面AA1B1B所成角为θ,
sinθ=|cos<
AM
,n>|=|
AM
•n
|
AM
|•|n|
|=
6
6

∴直线AM与平面AA1B1B所成角的正弦值为
6
6
点评:本题考查了线线垂直和线面角,利用几何体垂直关系建立坐标系,再利用对应向量的数量积证明线线垂直和求解线面角的正弦值,这是立体几何中常用的一种方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网