题目内容
如图,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA。
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20110825/201108251416089062255.gif)
(I)求证:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离
解:(Ⅰ)连接
交
于![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20110825/20110825141609000854.gif)
∵
,
面
,面
面![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20110825/20110825141609109988.gif)
∴![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20110825/20110825141609171960.gif)
又O为
的中点,
∴D为
中点
∴C1为
中点
∴![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20110825/201108251416092961049.gif)
∴
;
(Ⅱ)由题意
,过B作
,连接
,则![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20110825/20110825141609390956.gif)
∴
为
二面角的平面角
在
中,![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20110825/201108251416095461259.gif)
则
;
(Ⅲ)因为![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20110825/201108251416095931027.gif)
所以
,![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20110825/20110825141609968941.gif)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20110825/201108251416100001277.gif)
在
中,![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20110825/201108251416101562002.gif)
∴
。
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20110825/20110825141608937902.gif)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20110825/20110825141608953897.gif)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20110825/20110825141609000854.gif)
∵
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20110825/201108251416090001014.gif)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20110825/20110825141609046915.gif)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20110825/20110825141609093921.gif)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20110825/20110825141609093953.gif)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20110825/20110825141609109988.gif)
∴
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20110825/20110825141609171960.gif)
又O为
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20110825/20110825141609203902.gif)
∴D为
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20110825/20110825141609203862.gif)
∴C1为
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20110825/20110825141609250883.gif)
∴
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20110825/201108251416092961049.gif)
∴
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20110825/20110825141609296963.gif)
(Ⅱ)由题意
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20110825/201108251416093121299.gif)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20110825/20110825141609359957.gif)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20110825/20110825141609375882.gif)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20110825/20110825141609390956.gif)
∴
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20110825/20110825141609406925.gif)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20110825/20110825141609437978.gif)
在
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20110825/20110825141609546947.gif)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20110825/201108251416095461259.gif)
则
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20110825/201108251416095621764.gif)
(Ⅲ)因为
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20110825/201108251416095931027.gif)
所以
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20110825/201108251416098751223.gif)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20110825/20110825141609968941.gif)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20110825/201108251416100001277.gif)
在
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20110825/20110825141610140945.gif)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20110825/201108251416101562002.gif)
∴
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20110825/201108251416101711309.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目