题目内容
【题目】正方体ABCD-A1B1C1D1 的棱长为 2,且AC 与BD 交于点O,E 为棱DD1 中点,以A 为原点,建立空间直角坐标系A-xyz,如图所示.
(Ⅰ)求证:B1O⊥平面EAC;
(Ⅱ)若点F 在EA 上且B1F⊥AE,试求点F 的坐标;
(Ⅲ)求二面角B1-EA-C 的正弦值.
【答案】(Ⅰ)见解析;(Ⅱ) (Ⅲ)
【解析】
证明:(I) 由题设知下列各点的坐标A(0, 0, 0),B(2, 0, 0),C (2, 2, 0),
D (0, 2, 0),E (0, 2, 1),B1(2, 0, 2).
∵O是正方形ABCD的中心,∴O (1, 1, 0).
∴= (-1, 1, -2),= (2, 2, 0),= (0,2, 1).
∴·= (-1, 1, -2)·(2, 2, 0)
= -1·2 + 1·2-2·0 = 0.
·= (-1, 1, -2)·(0, 2, 1)
= -1·0 + 1·2-2·1 = 0.
∴
即B1O ⊥AC,B1O⊥AE,
∴B1O⊥平面ACE.
(II) 由F点在AE上,可设点F的坐标为F (0, 2l,l),
则= (-2, 2l,l-2).
= (-2, 2l,l-2)·(0, 2, 1) = 5l-2 = 0,
∴l= ,
∴.
(III) ∵B1O⊥平面EAC,B1F⊥AE,连结OF,由三垂线定理的逆定理得OF⊥AE.
∴∠OFB1即为二面角B1-EA-C的平面角.
∴=
又=,
∴= = .
在Rt△B1OF中,sin∠B1FO= = .
故二面角B1-EA-C的正弦值为.
【题目】众所周知,城市公交车的数量太多会造成资源的浪费,太少又难以满足乘客的需求,为此,某市公交公司在某站台的50名候车乘客中随机抽取10名,统计了他们的候车时间(单位:分钟),得到下表.
候车时间 | 人数 |
1 | |
4 | |
2 | |
2 | |
1 |
(1)估计这10名乘客的平均候车时间(同一组中的每个数据可用该组区间的中点值代替);
(2)估计这50名乘客的候车时间少于10分钟的人数.