题目内容

【题目】已知数列{an},其前n项和为Sn
(1)若{an}是公差为d(d>0)的等差数列,且{ }也为公差为d的等差数列,求数列{an}的通项公式;
(2)若数列{an}对任意m,n∈N* , 且m≠n,都有 =am+an+ ,求证:数列{an}是等差数列.

【答案】
(1)解:根据题意得:an=a1+(n﹣1)d,Sn=na1+ d,

= 成等差数列,公差为d,

=dn,

解得:d= ,a1=﹣

则an= n﹣


(2)解:令m=2,n=1,则 =2a2,即 =a2

整理得:a1+a3=2a2,即a1,a2,a3成等差数列,

下面用数学归纳法证明{an}成等差数列,

假设a1,a2,…,ak成等差数列,其中k≥3,公差为d,

则令m=k,n=1, =ak+a1+d,

∴2Sk+1=(k+1)(ak+a1+d)=k(ak+a1)+a1+ak+(k+1)d=2Sk+a1+ak+(k+1)d,

∴2ak+1=a1+ak+(k+1)d=2(a1+kd),即ak+1=a1+kd,

∴a1,a2,…,ak,ak+1成等差数列,

则对于一切自然数,数列{an}是等差数列


【解析】(1)利用等差数列的通项公式及前n项和公式表示出an与Sn , 代入验证即可确定出数列{an}的通项公式;(2)令m=2,n=1确定出a1 , a2 , a3成等差数列,再利用数学归纳法证明对于一切n≥3的自然数,数列{an}是等差数列即可.
【考点精析】认真审题,首先需要了解等差关系的确定(如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,即=d ,(n≥2,n∈N)那么这个数列就叫做等差数列),还要掌握等差数列的性质(在等差数列{an}中,从第2项起,每一项是它相邻二项的等差中项;相隔等距离的项组成的数列是等差数列)的相关知识才是答题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网