题目内容

(12分)(2011•福建)某日用品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:

X
1
2
3
4
5
f
a
0.2
0.45
b
c
(Ⅰ)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a、b、c的值;
(Ⅱ)在(Ⅰ)的条件下,将等级系数为4的3件日用品记为x1,x2,x3,等级系数为5的2件日用品记为y1,y2,现从x1,x2,x3,y1,y2,这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.

(Ⅰ)a=0.1,b=0.15,c=0.1(Ⅱ)P(A)==0.4

解析试题分析:(I)通过频率分布表得推出a+b+c=0.35.利用等级系数为4的恰有3件,等级系数为5的恰有2件,分别求出b,c,然后求出a.
(II)根据条件列出满足条件所有的基本事件总数,“从x1,x2,x3,y1,y2,这5件日用品中任取两件,等级系数相等”的事件数,求解即可.
解:(I)由频率分布表得a+0.2+0.45+b+c=1,即a+b+c=0.35.
因为抽取的20件日用品中,等级系数为4的恰有3件,所以b==0.15
等级系数为5的恰有2件,所以c==0.1
从而a=0.35﹣0.1﹣0.15=0.1
所以a=0.1,b=0.15,c=0.1.
(II)从x1,x2,x3,y1,y2,这5件日用品中任取两件,所有可能的结果为:
{x1,x2},{x1,x3},{x1,y1},{x1,y2},{x2,x3},{x2,y1},{x2,y2},{x3,y1},{x3,y2},{y1,y2}
设事件A表示“从x1,x2,x3,y1,y2,这5件日用品中任取两件,等级系数相等”,则A包含的基本事件为:
{x1,x2},{x1,x3},{x2,x3},{y1,y2}共4个,
又基本事件的总数为:10
故所求的概率P(A)==0.4
点评:本题考查概率、统计等基本知识,考查数据处理能力、运算能力、应用意识.考查函数与方程思想、分类与整合思想、必然与或然思想.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网