题目内容
一个口袋装有n个红球(n≥5且n∈N)和5个白球,一次摸奖从中摸2个球(每次摸奖后放回),2个球颜色不同则为中奖.
(1)试用n表示一次摸奖中奖的概率.
(2)若n=5,求3次摸奖的中奖次数ξ=1的概率及数学期望.
(3)记3次摸奖恰有1次中奖的概率为P,当n取多少时,P最大?
(1) P= (2) (3) n=20
解析
练习册系列答案
相关题目
某产品的三个质量指标分别为x,y,z,用综合指标S=x+y+z评价该产品的等级.若S≤4,则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:
产品编号 | A1 | A2 | A3 | A4 | A5 |
质量指标(x,y,z) | (1,1,2) | (2,1,1) | (2,2,2) | (1,1,1) | (1,2,1) |
| | | | | |
产品编号 | A6 | A7 | A8 | A9 | A10 |
质量指标(x,y,z) | (1,2,2) | (2,1,1) | (2,2,1) | (1,1,1) | (2,1,2) |
(2)在该样本的一等品中,随机抽取2件产品,
①用产品编号列出所有可能的结果;
②设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”,求事件B发生的概率.
某公司研制出一种新型药品,为测试该药品的有效性,公司选定个药品样本分成三组,测试结果如下表:
分组 | 组 | 组 | 组 |
药品有效 | |||
药品无效 |
(1)现用分层抽样的方法在全体样本中抽取个测试结果,问应在组抽取样本多少个? [来源:学优]
(2)已知,,求该药品通过测试的概率(说明:若药品有效的概率不小于%,则认为测试通过).