题目内容
【题目】在平面直角坐标系xOy中,椭圆E: (a>b>0)的离心率为,焦距为2.
(1)求椭圆E的方程;
(2)如图,动直线l:y=k1x-交椭圆E于A,B两点,C是椭圆E上一点,直线OC的斜率为k2,且k1k2=.M是线段OC延长线上一点,且|MC|∶|AB|=2∶3,⊙M的半径为|MC|,OS,OT是⊙M的两条切线,切点分别为S,T.求∠SOT的最大值,并求取得最大值时直线l的斜率.
【答案】(1);(2)
【解析】
试题分析:由椭圆焦距为 可得 ,由离心率为可得 ,根据可得 ,从而可得椭圆的标准方程;(2)直线方程与所求椭圆方程联立消去 ,可得 ,根据韦达定理与弦长公式可得可求出 的长,从而求出圆的半径,可得到 斜率,设出直线的方程,与椭圆方程联立,求出 点坐标,可得 的长,可求得 ,求出 的取值范围,从而可得 的最大值,进而可得结果.
试题解析:(1)由题意知e==,2c=2,所以a=,b=1,
所以椭圆E的方程为+y2=1.
(2)设A(x1,y1),B(x2,y2),
联立方程得(4k+2)x2-4k1x-1=0.
由题意知Δ>0,且x1+x2=,x1x2=-,
所以|AB|=|x1-x2|
=.
由题意可知圆M的半径r为
r=|AB|=.
由题设知k1k2=,所以k2=,
因此直线OC的方程为y=x.
联立方程
得x2=,y2=,
因此|OC|==.
由题意可知sin==,
而=
=,
令t=1+2k,则t>1,∈(0,1),
因此==
=≥1,
当且仅当=,即t=2时等号成立,此时k1=±,
所以sin≤,因此≤,
所以∠SOT的最大值为.
综上所述:∠SOT的最大值为,取得最大值时直线l的斜率为k1=±.
【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨)标准煤的几组对照数据
(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(2)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
参考公式:
【题目】中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们]对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15∽65岁的人群中随机调查100人,调査数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:
年龄 | |||||
支持“延迟退休”的人数 | 15 | 5 | 15 | 28 | 17 |
(1)由以上统计数据填列联表,并判断能否在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;
45岁以下 | 45岁以上 | 总计 | |
支持 | |||
不支持 | |||
总计 |
(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人
①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率.
②记抽到45岁以上的人数为,求随机变量的分布列及数学期望.
参考数据:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
,其中