ÌâÄ¿ÄÚÈÝ
10£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬Èô¡÷ABC²»ÊÇÖ±½ÇÈý½ÇÐΣ¬ÔòÏÂÁÐÃüÌâÕýÈ·µÄÊǢ٢ܢݣ¨Ð´³öËùÓÐÕýÈ·ÃüÌâµÄ±àºÅ£©¢ÙtanA•tanB•tanC=tanA+tanB+tanC
¢ÚtanA+tanB+tanCµÄ×îСֵΪ3$\sqrt{3}$
¢ÛtanA£¬tanB£¬tanCÖдæÔÚÁ½¸öÊý»¥Îªµ¹Êý
¢ÜÈôtanA£ºtanB£ºtanC=1£º2£º3£¬ÔòA=45¡ã
¢Ýµ±$\sqrt{3}$tanB-1=$\frac{tanB+tanC}{tanA}$ʱ£¬Ôòsin2C¡ÝsinA•sinB£®
·ÖÎö ÀûÓúͽǵÄÕýÇй«Ê½£¬½áºÏÈý½ÇÐεÄÄڽǺͣ¬¿ÉÅжϢ٣»¾Ù³ö·´Àý£ºA=$\frac{2¦Ð}{3}$£¬B=C=$\frac{¦Ð}{6}$£¬¿ÉÅжϢڣ»¸ù¾ÝÕýÇл¥Îªµ¹ÊýµÄÁ½¸öÈý½ÇÐÎÄڽǻ¥Ó࣬¿ÉÅжϢۣ»ÓÉ¢ÙÖнáÂÛ£¬¿ÉµÃtanA=1£¬½ø¶øÅжϢܣ»ÓÉ¢ÙÖнáÂÛ£¬¿ÉµÃC=60¡ã£¬½ø¶øÀûÓúͲî½Ç¹«Ê½¼°ÕýÏÒÐͺ¯ÊýµÄÐÔÖÊ£¬¿ÉÅжϢݣ®
½â´ð ½â£ºÓÉÌâÒâÖª£ºA¡Ù$\frac{¦Ð}{2}$£¬B¡Ù$\frac{¦Ð}{2}$£¬C¡Ù$\frac{¦Ð}{2}$£¬ÇÒA+B+C=¦Ð
¡àtan£¨A+B£©=tan£¨¦Ð-C£©=-tanC£¬
ÓÖ¡ßtan£¨A+B£©=$\frac{tanA+tanB}{1-tanAtanB}$£¬
¡àtanA+tanB=tan£¨A+B£©£¨1-tanAtanB£©=-tanC£¨1-tanAtanB£©=-tanC+tanAtanBtanC£¬
¼´tanA+tanB+tanC=tanAtanBtanC£¬¹Ê¢ÙÕýÈ·£»
µ±A=$\frac{2¦Ð}{3}$£¬B=C=$\frac{¦Ð}{6}$ʱ£¬tanA+tanB+tanC=$-\frac{\sqrt{3}}{3}$£¼3$\sqrt{3}$£¬¹Ê¢Ú´íÎó£»
ÈôtanA£¬tanB£¬tanCÖдæÔÚÁ½¸öÊý»¥Îªµ¹Êý£¬Ôò¶ÔÓ¦µÄÁ½¸öÄڽǻ¥Ó࣬ÔòµÚÈý¸öÄÚ½ÇΪֱ½Ç£¬ÕâÓëÒÑ֪ì¶Ü£¬¹Ê¢Û´íÎó£»
ÓÉ¢Ù£¬ÈôtanA£ºtanB£ºtanC=1£º2£º3£¬Ôò6tan3A=6tanA£¬ÔòtanA=1£¬¹ÊA=45¡ã£¬¹Ê¢ÜÕýÈ·£»
µ±$\sqrt{3}$tanB-1=$\frac{tanB+tanC}{tanA}$ʱ£¬$\sqrt{3}$tanA•tanB=tanA+tanB+tanC£¬¼´tanC=$\sqrt{3}$£¬C=60¡ã£¬
´Ëʱsin2C=$\frac{3}{4}$£¬
sinA•sinB=sinA•sin£¨120¡ã-A£©=sinA•£¨$\frac{\sqrt{3}}{2}$cosA+$\frac{1}{2}$sinA£©=$\frac{\sqrt{3}}{2}$sinAcosA+$\frac{1}{2}$sin2A=$\frac{\sqrt{3}}{4}$sin2A+$\frac{1}{4}$-$\frac{1}{4}$cos2A=$\frac{1}{2}$sin£¨2A-30¡ã£©$+\frac{1}{4}$¡Ü$\frac{3}{4}$£¬
Ôòsin2C¡ÝsinA•sinB£®¹Ê¢ÝÕýÈ·£»
¹Ê´ð°¸Îª£º¢Ù¢Ü¢Ý
µãÆÀ ±¾ÌâÒÔÃüÌâµÄÕæ¼ÙÅжÏΪÔØÌ壬¿¼²éÁ˺ͽǵÄÕýÇй«Ê½£¬·´Ö¤·¨£¬ÓÕµ¼¹«Ê½µÈ֪ʶµã£¬ÄѶÈÖеµ£®
A£® | 90¡ã | B£® | 75¡ã | C£® | 60¡ã | D£® | 45¡ã |
A£® | [$\frac{1}{2}$£¬1£© | B£® | £¨0£¬$\frac{1}{2}$£© | C£® | [$\frac{\sqrt{2}}{2}$£¬1£© | D£® | £¨0£¬$\frac{\sqrt{2}}{2}$] |
A£® | [$\frac{1}{2}$£¬1£© | B£® | [$\frac{1}{2}$£¬+¡Þ£© | C£® | [$\frac{\sqrt{3}}{2}$£¬+¡Þ£© | D£® | £¨1£¬+¡Þ£© |
A£® | 2 | B£® | 2$\sqrt{2}$ | C£® | 4 | D£® | 6 |