题目内容
【题目】己知抛物线的焦点为,准线与轴的交点为,过点的直线,抛物线相交于不同的两点.
(1)若,求直线的方程;
(2)若点在以为直径的圆外部,求直线的斜率的取值范围.
【答案】(1)(2) .
【解析】试题分析:(1)设出直线方程,与抛物线方程联立,得到关于的一元二次方程,利用根与系数的关系、弦长公式确定直线的斜率即可;(2)设出直线方程,与抛物线方程联立,得到关于的一元二次方程,利用根与系数的关系、点在以为直径的圆外部()进行求解.
试题解析:(1)由题可知且直线斜率存在,所以可设直线:,
由得:,
令,解得:,即
设,,则有,
因为,所以,解得,
所以,直线的方程为:.
(2)设直线:,,,
由(1)知:,,
因为点在以为直径的圆外部,所以有,
又,,
所以
解得:,即
所以,直线的斜率的取值范围是.
练习册系列答案
相关题目
【题目】某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,收集数据如下表:
加工零件个数x/个 | 10 | 20 | 30 | 40 | 50 |
加工时间y/分钟 | 64 | 69 | 75 | 82 | 90 |
经检验,这组样本数据具有线性相关关系,那么对于加工零件的个数x与加工时间y这两个变量,下列判断正确的是( )
A. 成正相关,其回归直线经过点(30,75)
B. 成正相关,其回归直线经过点(30,76)
C. 成负相关,其回归直线经过点(30,76)
D. 成负相关,其回归直线经过点(30,75)