题目内容
(本小题满分12分)
(Ⅰ)已知函数
在
上具有单调性,求实数
的取值范围;
(Ⅱ)已知向量
、
、
两两所成的角相等,且
,
,
,求
.
(Ⅰ)已知函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240051405001009.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005140516342.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005140531312.png)
(Ⅱ)已知向量
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005140562312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005140578326.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005140594282.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005140609397.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005140625529.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005140640430.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005140656554.png)
(Ⅰ)
或
(Ⅱ)
或![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005140718437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005140672415.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005140687508.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005140703442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005140718437.png)
试题分析:(Ⅰ)因为函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005140734495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005140750480.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005140734495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005140516342.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005140781471.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005140796462.png)
解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005140672415.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005140687508.png)
故实数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005140531312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005140672415.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005140687508.png)
(Ⅱ)当 向量
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005140890466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005140906292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005140921551.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005140703442.png)
当 向量
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005140890466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005140968410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005140984605.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005140999974.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005141015514.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005140921551.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005140718437.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005140921551.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005140703442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005140718437.png)
点评:第一问中考查二次函数的性质和应用,是基础题.解题的关键是灵活应用二次函数的性质,第二问中主要把握好向量模和数量积间的转化.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
题目内容