题目内容

(本题满分15分 )已知函数

(1)求函数的最大值;

(2)若,不等式恒成立,求实数的取值范围;

(3)若,求证:

 

【答案】

(1)处取得最大值,且最大值为0.(2). (3)见解析。

【解析】(1)先求出 ,然后求导确定单调区间,极值,最值即可.

(2) 本小题转化为上恒成立,进一步转化为,然后构造函数,利用导数研究出h(x)的最大值,再利用基础不等式可知,从而可知a的取值范围.

(1),则.…………2分

时,,则上单调递增;

时,,则上单调递减,

所以,处取得最大值,且最大值为0.     ………………………4分

(2)由条件得上恒成立.           ………………………6分

,则

时,;当时,,所以,

要使恒成立,必须.                  ………………………8分

另一方面,当时,,要使恒成立,必须

所以,满足条件的的取值范围是.            ………………………10分

(3)当时,不等式等价于.……12

,设,则

上单调递增,

所以,原不等式成立.          ………………15分

 

练习册系列答案
相关题目

((本题满分15分)
某有奖销售将商品的售价提高120元后允许顾客有3次抽奖的机会,每次抽奖的方法是在已经设置并打开了程序的电脑上按“Enter”键,电脑将随机产生一个                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1~6的整数数作为号码,若该号码是3的倍数则顾客获奖,每次中奖的奖金为100元,运用所学的知识说明这样的活动对商家是否有利。

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网