题目内容
【题目】已知点P为函数f(x)=lnx的图象上任意一点,点Q为圆 上任意一点,则线段PQ长度的最小值为( )
A.
B.
C.
D.
【答案】B
【解析】解:由圆的对称性可得只需考虑圆心C(e+ ,0)到函数f(x)=lnx图象上一点的距离的最小值. 设f(x)图象上一点(m,lnm),
由f(x)的导数为f′(x)= ,即有切线的斜率为k= ,
可得 =﹣m,
即有lnm+m2﹣(e+ )m=0,
由g(x)=lnx+x2﹣(e+ )x,可得g′(x)= +2x﹣(e+ ),
当2<x<3时,g′(x)>0,g(x)递增.
又g(e)=lne+e2﹣(e+ )e=0,
可得x=e处点P(e,1)到点Q的距离最小,且为 ,
则线段PQ的长度的最小值为 ﹣ = .
故选:B.
【题目】河南多地遭遇年霾,很多学校调整元旦放假时间,提前放假让学生们在家躲霾.郑州市根据《郑州市人民政府办公厅关于将重污染天气黄色预警升级为红色预警的通知》,自12月29日12时将黄色预警升级为红色预警,12月30日0时启动Ⅰ级响应,明确要求“幼儿园、中小学等教育机构停课,停课不停学”.学生和家长对停课这一举措褒贬不一,有为了健康赞成的,有怕耽误学习不赞成的,某调查机构为了了解公众对该举措的态度,随机调查采访了50人,将调查情况整理汇总成如表:
年龄(岁) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75] |
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 4 | 6 | 9 | 6 | 3 | 4 |
(Ⅰ)请在图中完成被调查人员年龄的频率分布直方图;
(Ⅱ)若从年龄在[25,35),[65,75]两组采访对象中各随机选取2人进行深度跟踪调查,选中4人中不赞成这项举措的人数为X,求随机变量X的分布列和数学期望.