题目内容
【题目】[2018·郴州期末]已知三棱锥中,垂直平分,垂足为,是面积为的等边三角形,,,平面,垂足为,为线段的中点.
(1)证明:平面;
(2)求与平面所成的角的正弦值.
【答案】(1)见解析(2)
【解析】试题分析:
(1)要证线面垂直,一般先证线线垂直,这可由和是等边三角形及O是AB中点易得;
(2)要求直线与平面所成的角,一种方法作出线面角的平面角,然后解三角形得结论,也可建立空间直角坐标系,如解析中的坐标系,写出各点坐标,求出直线的方向向量与平面的法向量,由方向向量与法向量的夹角与直线和平面所成角互余可得.
试题解析:
(1)证明:∵垂直平分,垂足为,∴.
∵,∴是等边三角形.
又是等边三角形.
∴是中点,,.
∵,,平面,∴平面.
(2)解:由(1)知,平面平面.
因为平面与平面的交线为.
∵平面.∴.
又等边面积为,∴
又,∴ 是中点.
如图建立空间直角坐标系,
,,,
所以,,
设平面的法向量为,则
,取,则,.
即平面的一个法向量为.
所以与平面所成角的正弦值为.
【题目】某地公共电汽车和地铁按照里程分段计价,具体如下表:
乘公共电汽车方案 | 10公里(含)内2元; 10公里以上部分,每增加1元可乘坐5公里(含) |
乘坐地铁方案 | 6公里(含)内3元; 6公里至12公里(含)4元; 12公里至22公里(含)5元; 22公里至32公里(含)6元; 32公里以上部分,每增加1元可乘坐20公里(含) |
已知在一号线地铁上,任意一站到站的票价不超过5元,现从那些只乘坐一号线地铁,且在站出站的乘客中随机选出120人,他们乘坐地铁的票价统计如图所示.
(Ⅰ)如果从那些只乘坐一号线地铁,且在站出站的乘客中任选1人,试估计此人乘坐地铁的票价小于5元的概率;
(Ⅱ)已知选出的120人中有6名学生,且这6名学生中票价为3、4、5元的人数分别为3,2,1人,现从这6人中随机选出2人,求这2人的票价和恰好为8元的概率;
(Ⅲ)小李乘坐一号线地铁从地到站的票价是5元,返程时,小李乘坐某路公共电汽车所花交通费也是5元,假设小李往返过程中乘坐地铁和公共电汽车的路程均为公里,试写出的取值范围.
【题目】某校高三课外兴趣小组为了解高三同学高考结束后是否打算观看2018年足球世界杯比赛的情况,从全校高三年级1500名男生、1000名女生中按分层抽样的方式抽取125名学生进行问卷调查,情况如下表:
打算观看 | 不打算观看 | |
女生 | 20 | b |
男生 | c | 25 |
(1)求出表中数据b,c;
(2)判断是否有99%的把握认为观看2018年足球世界杯比赛与性别有关;
(3)为了计算“从10人中选出9人参加比赛”的情况有多少种,我们可以发现它与“从10人中选出1人不参加比赛”的情况有多少种是一致的.现有问题:在打算观看2018年足球世界杯比赛的同学中有5名男生、2名女生来自高三(5)班,从中推选5人接受校园电视台采访,请根据上述方法,求被推选出的5人中恰有四名男生、一名女生的概率.
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 |
K0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
附: