题目内容
【题目】如图,在三棱锥中,平面,,,M为中点,H为线段上一点(除的中点外),且.当三棱锥的体积最大时,则三棱锥的外接球表面积为( )
A.B.
C.D.
【答案】B
【解析】
利用线面垂直的判定定理和性质,可以证明平面,利用三棱锥的等积性,结合基本不等式,这样可以求出,过点C作,取,的中点T,N,连接,,过点T作的平行线交于点O.利用线面垂直的性质和判定定理可以证明出O为三棱锥的外接球的球心,运用正切函数的定义,球的表面积公式进行求解即可.
在中,因为M为中点,故,且,因为,,所以平面,故,又因为,所以平面,因此,故平面,三棱锥的体积等于三棱锥的体积,即只需底面面积最大即可.因为,则,故,当且仅当时取等号.在中,,故,过点C作,取,的中点T,N,连接,,过点T作的平行线交于点O.由平面知平面.又平面,故平面.因此O为三棱锥的外接球的球心,由,因为,所以,故,即三棱锥的外接球表面积为.
故选:B
【题目】在综合素质评价的某个维度的测评中,依据评分细则,学生之间相互打分,最终将所有的数据合成一个分数,满分100分,按照大于或等于80分的为优秀,小于80分的为合格,为了解学生的在该维度的测评结果,在毕业班中随机抽出一个班的数据.该班共有60名学生,得到如下的列联表:
优秀 | 合格 | 总计 | |
男生 | 6 | ||
女生 | 18 | ||
合计 | 60 |
已知在该班随机抽取1人测评结果为优秀的概率为.
(1)完成上面的列联表;
(2)能否在犯错误的概率不超过0.10的前提下认为性别与测评结果有关系?
(3)现在如果想了解全校学生在该维度的表现情况,采取简单随机抽样方式在全校学生中抽取少数一部分来分析,请你选择一个合适的抽样方法,并解释理由.
附:
0.25 | 0.10 | 0.025 | |
1.323 | 2.706 | 5.024 |
【题目】我市某区2018年房地产价格因“棚户区改造”实行货币化补偿,使房价快速走高,为抑制房价过快上涨,政府从2019年2月开始采用实物补偿方式(以房换房),3月份开始房价得到很好的抑制,房价渐渐回落,以下是2019年2月后该区新建住宅销售均价的数据:
月份 | 3 | 4 | 5 | 6 | 7 |
价格(百元/平方米) | 83 | 82 | 80 | 78 | 77 |
(1)研究发现,3月至7月的各月均价(百元/平方米)与月份之间具有较强的线性相关关系,求价格(百元/平方米)关于月份的线性回归方程;
(2)用表示用(1)中所求的线性回归方程得到的与对应的销售均价的估计值,3月份至7月份销售均价估计值与实际相应月份销售均价差的绝对值记为,即,.若,则将销售均价的数据称为一个“好数据”,现从5个销售均价数据中任取2个,求抽取的2个数据均是“好数据”的概率.
参考公式:回归方程系数公式,;参考数据:,.