题目内容
如图,在四棱锥
中,
底面
,
,
,
,
是
的中点.
(Ⅰ)证明:
;
(Ⅱ)证明:
平面
;
(Ⅲ)求二面角
的正切值![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232116230693726.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211622679603.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211622695394.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211622710526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211622726497.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211622741541.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211622757685.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211622788621.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211622804318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211622819383.png)
(Ⅰ)证明:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211622835594.png)
(Ⅱ)证明:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211622851388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211623022473.png)
(Ⅲ)求二面角
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211623038557.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232116230693726.png)
(Ⅰ)证明:在四棱锥
中,因
底面
,
平面
,故
.
,
平面
.
而
平面
,
.…………………………………………(4分)
(Ⅱ)证明:由
,
,可得
.
是
的中点,
.由(Ⅰ)知,
,且
,所以
平面
.而
平面
,
.
底面
在底面
内的射影是
,
,
.
又
,综上得
平面
.………………………………(8分)
(Ⅲ)解法一:过点
作
,垂足为
,连结
.则(Ⅱ)知,
平面
,
在平面
内的射影是
,则
.因此
是二面角
的平面角.由已知,得
.设
,
可得
.
在
中,
,
,
则
.
在
中,
.所以二面角
的正切值为
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232116252843681.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211622679603.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211622695394.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211622710526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211623537442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211622710526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211623599554.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211623615808.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211623662448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211623865461.png)
而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211623880435.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211623865461.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211624083622.png)
(Ⅱ)证明:由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211624114620.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211624130669.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211624145521.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211624161337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211622819383.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211624270618.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211624286595.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211624317594.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211624333428.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211624473453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211624489401.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211624473453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211624535596.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211624551412.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211624567636.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211622710526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211624598385.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211624613496.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211624629555.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211624645666.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211622851388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211623022473.png)
(Ⅲ)解法一:过点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211624707300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211624879622.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211624910399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211624925488.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211624333428.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211624473453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211624972475.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211624473453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211624925488.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211625035638.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211625050595.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211623038557.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211625081651.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211625113483.png)
可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232116251281625.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211625144599.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211625159652.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211625191764.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232116252061809.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211625222695.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232116252371196.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211623038557.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211625269299.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232116252843681.png)
(I)证明:
即可.
(II)分别证明:
即可.
(III)可以利用空间向量的知识直接求,也可以直接根据三垂线定理作出二面角的平面角解三角形即可
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211625393673.png)
(II)分别证明:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211625409926.png)
(III)可以利用空间向量的知识直接求,也可以直接根据三垂线定理作出二面角的平面角解三角形即可
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目