题目内容
已知函数f(x)=x2-2ax+5在(-∞,2]上是减函数,且对任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,则实数a的取值范围为______.
[2,3]
函数f(x)=(x-a)2+5-a2在(-∞,2]上是减函数,∴a≥2,函数f(x)在[1,a]上是减函数,在[a,a+1]上是增函数,要使x1,x2∈[1,a+1]时,总有|f(x1)-f(x2)|≤4,
只要
又f(1)≥f(a+1),∴只要f(1)-f(a)≤4,即(6-2a)-(5-a2)≤4,解得-1≤a≤3.又a≥2,故2≤a≤3.
只要
又f(1)≥f(a+1),∴只要f(1)-f(a)≤4,即(6-2a)-(5-a2)≤4,解得-1≤a≤3.又a≥2,故2≤a≤3.
练习册系列答案
相关题目