题目内容

函数f1(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的一段图象过点(0,1),如图所示.
(1)求函数f1(x)的表达式;
(2)将函数y=f1(x)的图象向右平移个单位,得函数y=f2(x)的图象,求y=f2(x)的最大值,并求出此时自变量x的值.
(1)由图知,T=
11π
12
-(-
π
12
)=π,
∴ω=
T
=
π
=2;
又2×(-
π
12
)+φ=0,
∴φ=
π
6

∴f1(x)=Asin(2x+
π
6
),
又f1(0)=1,即Asin
π
6
=1,
∴A=
1
sin
π
6
=2,
∴f1(x)=2sin(2x+
π
6
);
(2)∵y=f2(x)=f1(x-
π
4
)=2sin[2(x-
π
4
)+
π
6
]=2sin(2x-
π
3
),
∴当2x-
π
3
=2kπ+
π
2
(k∈Z),即x=kπ+
12
(k∈Z)时,y=f2(x)取得最大值2.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网