题目内容
已知
,函数
.
(1)求
的单调区间和值域;
(2)设
,若
,总
,使得
成立,求
的取值范围;
(3)对于任意的正整数
,证明:
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212904241496.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232129042571425.png)
(1)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212904272447.png)
(2)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212904850387.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212904865617.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212904881578.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212904896664.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212904912283.png)
(3)对于任意的正整数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212904928297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212904959922.png)
(1)
单调减区间
,
单调增区间
,
(2)
;(3)略
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212904272447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212904990667.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212904272447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212905037634.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232129050521047.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212905084831.png)
本试题主要考查了导数在研究函数中的运用。
解 (1)令
,解得
(舍去),
单调减区间
,
单调增区间
,
;…… 4分
(2)∵
,
∴当
时
,…………………6分
∴
为
上的减函数,从而当
时有
,…8分
由题意知:
,
即
故
;………………… 10分
(3)构造函数:
,
则
,………………… 11分
当
时,
,∴函数
在
上单调增,………………… 12分
∴
时,恒有
,……13分
即
恒成立,…………………14分
故对任意正整数
,取
有
.
解 (1)令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212905099551.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212905115610.png)
![]() | 0 | (![]() | ![]() | (![]() | 1 |
![]() | | __ | 0 | + | |
![]() | ![]() | ↘ | ![]() | ↗ | ![]() |
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212904272447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212904990667.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212904272447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212905037634.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232129050521047.png)
(2)∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212905396780.png)
∴当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212905411740.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212905427870.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212905442442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212905458362.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212904241496.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232129054891213.png)
由题意知:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232129055051103.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232129055361332.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212905084831.png)
(3)构造函数:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232129055521534.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232129055671223.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212904241496.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212905630598.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212905645484.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212905458362.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212905676753.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212904241496.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212905708700.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212905723885.png)
故对任意正整数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212904928297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212905754673.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212905832893.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目