题目内容
【题目】在△ABC中,角A、B、C所对的边分别为a、b、c,设向量 =(a,c), =(cosC,cosA).
(1)若 ∥ ,a= c,求角A;
(2)若 =3bsinB,cosA= ,求cosC的值.
【答案】
(1)解:∵ ∥ ,∴acosA=ccosC,
∴sinAcosA=sinCcosC,
∴sin2A=sin2C,
∴2A=2C或2A+2C=π,
∴A=C(舍去)或A+C= ,
∴B= ,
Rt△ABC中,tanA= ,A= ;
(2)解:∵ =3bsinB,
∴acosC+ccosA=3bsinB,
由正弦定理可得sinAcosC+sinCcosA=3sin2B,
∴sin(A+C)=3sin2B,
∴sinB= ,
∵cosA= ,
∴sinA= ,∵sinA>sinB,∴a>b,
∴cosB= ,
∴cosC=﹣cos(A+B)=﹣ × + = .
【解析】(1)若 ∥ ,可得acosA=ccosC,可求B,利用a= c,求角A;(2)若 =3bsinB,由正弦定理可得sinB= ,由cosA= ,即可求cosC的值.
练习册系列答案
相关题目