题目内容

【题目】在△ABC中,角A、B、C所对的边分别为a、b、c,设向量 =(a,c), =(cosC,cosA).
(1)若 ,a= c,求角A;
(2)若 =3bsinB,cosA= ,求cosC的值.

【答案】
(1)解:∵ ,∴acosA=ccosC,

∴sinAcosA=sinCcosC,

∴sin2A=sin2C,

∴2A=2C或2A+2C=π,

∴A=C(舍去)或A+C=

∴B=

Rt△ABC中,tanA= ,A=


(2)解:∵ =3bsinB,

∴acosC+ccosA=3bsinB,

由正弦定理可得sinAcosC+sinCcosA=3sin2B,

∴sin(A+C)=3sin2B,

∴sinB=

∵cosA=

∴sinA= ,∵sinA>sinB,∴a>b,

∴cosB=

∴cosC=﹣cos(A+B)=﹣ × + =


【解析】(1)若 ,可得acosA=ccosC,可求B,利用a= c,求角A;(2)若 =3bsinB,由正弦定理可得sinB= ,由cosA= ,即可求cosC的值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网