题目内容
在直角梯形PBCD中,
,A为PD的中点,如下左图。将
沿AB折到
的位置,使
,点E在SD上,且
,如下图。
(1)求证:
平面ABCD;
(2)求二面角E—AC—D的正切值.![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240101021175922.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240101020231162.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010102039511.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010102054500.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010102070530.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010102085705.png)
(1)求证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010102101427.png)
(2)求二面角E—AC—D的正切值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240101021175922.jpg)
(1)在图中,由题意可知
为正方形,所以在图中,
,
四边形ABCD是边长为2的正方形,
因为
,AB
BC,
所以BC
平面SAB,
又
平面SAB,所以BC
SA,又SA
AB,
所以SA
平面ABCD,
(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010102397386.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010102132721.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010102257671.png)
四边形ABCD是边长为2的正方形,
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010102070530.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010102288183.png)
所以BC
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010102288183.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010102319437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010102288183.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010102288183.png)
所以SA
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010102288183.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010102397386.png)
试题分析:(1)证明:在图中,由题意可知,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240101024135021.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010102132721.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010102257671.png)
四边形ABCD是边长为2的正方形,
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010102070530.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010102288183.png)
所以BC
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010102288183.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010102319437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010102288183.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010102288183.png)
所以SA
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010102288183.png)
(2)在AD上取一点O,使
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010102585684.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010102085705.png)
所以EO
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010102288183.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010102288183.png)
则AC
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010102288183.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010102288183.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010102694518.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010102709851.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010102725600.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240101027411626.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240101027721069.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010102397386.png)
点评:本题中第二问求二面角采用的是作角求角的思路,在作角时常用三垂线定理法;此外还可用空间向量的方法求解;以A为原点AB,AD,AS为x,y,z轴建立坐标系,写出各点坐标,代入向量计算公式即可
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目